Introduction to
Algorithms and Data Structures

11. Graph Algorithms (1)
Breadth-first search and Depth-first
search

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.
uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara

http://www.jaist.ac.jp/~uehara/course/2020/myanmar/

Search in Graph °
SN

* How can we check all vertices in G e

a graph systematically, \ \
and solve some problem? Q\ G
— e.g., Do you have a path from A to D? G

 Two major (efficient) algorithms:

— Breadth First Search: A->B->C->D->F->E
it starts from a vertex v, and visit all (reachable)
vertices from the vertices closer to v.

— Depth First Search: A->B->D->E->C->F
it starts from a vertex v, and visit every reachable
vertex from the current vertex, and back to the last
vertex which has unvisited neighbor.

BFS (Breadth-First Search)

* For a graph G=(V,E) and any start point s€V, all
reachable vertices from s will be visited from s in
order of distance from s.

e QOutline of method: color all vertices by white,
gray, or black as follows;
— White: Unvisited vertex
— Gray: It is visited, but it has unvisited neighbors

— Black: It is already visited, and all neighbors are also
visited

— Search is completed when all vertices got black
— Color of each vertex is changed as white—>gray—>black

BFS (Breadth-First Search):

Program code

BFS(V,E,s){
for veV do toWhite(v); endfor
toGray(s);
Q={s};

while(Q!={}){ which became in gray first

u=pop(Q); // Q =2 Q’ where Q={u}uQ’

for ve{veVv|(v,u)€eE}
if isWhite(v) then
toGray(v); push(Q,v);
endfor

toBlack(u); which will be processed last

) ol I'N)

} Viake U In black arter visiting all neighbors

¥

BFS (Breadth-First Search): Example

3

Q=i1}

u=1,
visit 2
Q=12}
black 1

u=2,
visit 3,4,5

Q={3.4,5}
black 2

u=3,
visit null

Q=14.5}
black 3

u=4,
visit null

Q={5}
black 4

u=yJ,
visit 6
Q=16}
black 5

u==o,
visit null
Q={}
black 6

BFS:
] : BFS(V,E,s){
Time complexity for vev do

Consider from towhite(v);

: : : df
the viewpoints of vertices shoror

toGray(s);
and edges 0={s};

e Each vertex never gets white hile | —
again after initialization. " $=pép%é)?} 1
* Each vertex gets into Q and for vE{v,EV| (v,u)€E}
gets out from Q at most once if isWhite(\;) then
* Each edge is checked at most toGray(v);

once ush(0,v) ;
— when one endpoint vertex is P >0

taken from Q and its neighbg endif
are checked along edges endfor

» ~O(IVI+|E) }}toBlack(u);

Adj. matrix is not good

using System.Collections.Generic;
using static System.Console;

public class il111 12 p7 {
public static void Main(){

List<int>[] edges = new List<int>[7];
edges[1] new List<int>{2};
edges[2] new List<int>{1,3,4,5};
edges[3] new List<int>{2,5};
edges[4] new List<int>{2};
edges[5] new List<int>{2,3,6};
edges[6] new List<int>{5};

b4\ 6,edges,1);
}

Specify the number of nodes '

and start node

Initialize by 0 = white

A

Refer the first node and remove it

Output

Real example code
for BFS

Initialize adj. list for each node

static void bfs(int n, List<int>[] edges, int s) {

int[] color = new int[n+1];
color[s] = 1;

List<int> q =
g.Add(s);

new List<int>();

Queue is realized by List
while (g.Count > @) {

int u = q[@]; q.RemoveAt(9);
foreach (int v in edges[u]) {
if (color[v] == 0) {
color[v] = 1;
gq.Add(v);
}
}

color[u] = 2;

Write("u="+u+", Q={ ");

foreach (int w in q) Write(w+" ");

Write("}, color={ ");

for(int i=1; i<=n; i++) Write(color[i]+" ");
WritelLine("}");

Application of BFS:
Shortest path problem on graph

Definition of “distance”
— Start vertex v has distance 0

— Except start vertex, each vertex u has distance d+1,
where d is the distance of parent of u.

* On BFS, modify that each gray vertex receives
its “distance” from black neighbor, then you
get (shortest) distance from v to it.

DFS (Depth-First Search)

* For a graph G=(V,E) and start point s€V, it
follows reachable vertices from s until it
reaches a vertex that has no unvisited
neighbor, and returns to the last vertex that

has unvisited neighbors. ; :
<A Program code is relatively

dfs(V, E, S}/{ — simple, and vertices are
visit(s) put into a stack when dfs

for (s, w)€E do :
if notVisited(w) then makes a recursive call.

dfs(V, E, w) «—recursive call of dfs
toBlack(u) «—make it black after check

)

DFS: Example

1

4
|

4
|
4
|

4

e

2

oy
o

3
6

3

6
3
6
3
6

DFS(1)

DFS(2)

DFS(3)

DFS(5)

DFS(6)

DFS(6)

DFS(5)
DFS(3)
DFS(2)

DFS(4)

DFS(2)

10

using System.Collections.Generic; I I (j
using static System.Console; Rea examp e CO e
public class il111 12 p10 { for DFS

public static void Main(){

List<int>[] edges = new List<int>[7];

edges[1] new List<int>{2}; (by recu rSive Ca I I)

edges[2] = new List<int>{1,3,4,5};

edges[3] = new List<int>{2,5};

edges[4] = new List<int>{2}; Initialize adj. list for each node
edges[5] = new List<int>{2,3,6};

edges[6] = new List<int>{5};

depth = 0;
color = new int[7]; Body is quite compact!
WriteLine("dfs(1)");

e, 1) Specify the start node

}

static void dfs(List<int>[] edges, int u) {
static int depth; depth ++;
static int[] color; color[u] = 1;

foreach (int v in edges[u]) {
if (color[v]==0) {
for (int i=0; i<depth; i++) Write("

Colors are kept outside of function
depth is not required (only for output) WriteLine("->dfs("+v+")");
dfs(edges, v);
} Output

}
depth --;

Implementation of BFS
without recursive call; We can use stack

DFS(V, E, s){

for veV do toWhite(v); endfor

toGray(s); T aray nodes,
S={s};

while(S!={}){
u=pop(S);
for ve{veV|(u,v)€EE}
if isnotBlack(v) then
toGray(v); push(S,v);
endif
endfor will be checked

toBlack(u);

which becomes in gray

o)
- VAW \J ')

} Viake u In black atrter visiting all neighbors

¥

| 2~ 3
1 2 3
1 2 3
1 2 3

S={1}

u=1
visit 2
S={2}
black 1

u=2

visit 5,4,3
S={5,4,3}
black 2

u=3

visit 5
S={5,4,5}
black 3

u=>

Visit 6
S={5,4,6}
black 5

u=6
visit null
S=1{5,4}
black 6

u=4
visit null
S={5}
black 4

u=>3
visit null

S=1

13

Application of DFS:
Find connected components in a graph

* For a given (disconnected) graph G = (V, E),
divide it into connected graphs G, = (V,, E,), ...,
G.=(V, E).

— We will give a numbering array cn[] such that
VuveV, ueV, AveV, A\ i# = cnlu] # cn[v]

a M A
Gl/ Q\ G
.. ©

S o Y

Application of DFS:

Find connected components of a graph

cc(V,E,en){ //en[|V]]
for veV do
cn[v] = 0; /*initialize*/
endfor
k = 1;

for V€V do dfs(V,E,v,k,cn){
if cn[v]==0 then cnlv]=k;

dfs(V,E,v,k,cn); for ue{u|(v,u)€eE} do
k=k+1; if cn[u]==0 then
endif dfs(V,E,u,k,cn);
endfor endif

} endfor
}

BFS v.s. DFS on a graph (1)

From the viewpoint of algorithms:

Two major efficient & simple search algorithms
— Breadth First Search:

It corresponds to “Queue”
— Depth First Search:

It corresponds to “Stack”

— Both algorithms are easy to implement to run in
O(|V|+]|E]) time. (In a sense, this time complexity is
optimal since you have to check all input data.)

16

BFS v.s. DFS on a graph (2)

From the practical viewpoint

* BFS
— Advantage: It can find shortest path

— Disadvantage: It requires memory! (check binary tree
of depth n)

* DFS

— Advantage: It requires few memory (proportional to
the depth of the graph)

— Disadvantage: It may find non-shortest path.

Depending on applications, we choose better algorithm.

