
Linear-Time Counting Algorithms for Independent Sets in
Chordal Graphs

Yoshio Okamoto∗, Takeaki Uno†, and Ryuhei Uehara‡

Abstract

We study some counting and enumeration problems for chordal graphs, especially concerning independent
sets. We first provide the following efficient algorithms for a chordal graph: (1) a linear-time algorithm for
counting the number of independent sets; (2) a linear-time algorithm for counting the number of maximum inde-
pendent sets; (3) a polynomial-time algorithm for counting the number of independent sets of a fixed size. With
similar ideas, we show that enumeration (namely, listing) of the independent sets, the maximum independent
sets, and the independent sets of a fixed size in a chordal graph can be done in constant amortized time per out-
put. On the other hand, we prove that the following problems for a chordal graph are#P-complete: (1) counting
the number of maximal independent sets; (2) counting the number of minimum maximal independent sets. With
similar ideas, we also show that finding a minimum weighted maximal independent set in a chordal graph is
NP-hard, and even hard to approximate.
Keywords: chordal graph, counting, enumeration, independent set,NP-completeness,#P-completeness, poly-
nomial time algorithm.

1 Introduction

How can we cope with computationally hard graph problems? There are several possible answers, and one of
them is to utilize the special graph structures arising from a particular context. This has been motivating the study
of special graph classes in algorithmic graph theory [3, 13]. This paper deals with counting and enumeration
problems from this perspective. Recently, counting and enumeration of some specified sets in a graph have been
widely investigated, e.g., in the data mining area. In general, however, from the graph-theoretic point of view, those
problems are hard even if input graphs are quite restricted. For example, counting the number of independent sets
in a planar bipartite graph of maximum degree 4 is#P-complete [21]. Therefore, we wonder what kind of graph
structures makes counting and enumeration problems tractable.

In this paper, we consider chordal graphs. Achordal graphis a graph in which every cycle of length at least
four has a chord. From the practical point of view, chordal graphs have numerous applications in, for example,
sparse matrix computation (e.g., see Blair & Peyton [2]), relational databases [1], and computational biology
[4]. Chordal graphs have been widely investigated, and they are sometimes called triangulated graphs, or rigid
circuit graphs (see, e.g., Golumbic’s book [13, Epilogue 2004]). A chordal graph has various characterizations;
for example, a chordal graph is an intersection graph of subtrees of a tree, and a graph is chordal if and only if it
admits a special vertex ordering, called perfect elimination ordering [3]. Also, the class of chordal graphs forms a
wide subclass of perfect graphs [13].

It is known that many graph optimization problems can be solved in polynomial time for chordal graphs; to
list a few of them, the maximum weighted clique problem, the maximum weighted independent set problem, the
minimum coloring problem [12], the minimum maximal independent set problem [8]. There are also parallel algo-
rithms to solve some of these problems efficiently [14]. However, relatively fewer problems have been studied for
enumeration and counting in chordal graphs; the only algorithms we are aware of are the enumeration algorithms
for all maximal cliques [11], all maximal independent sets [7, 16], all minimum separators and minimal separators
[5], and all perfect elimination orderings [6].

In this paper, we investigate the problems concerning the number of independent sets in a chordal graph. Table
1 lists the results of the paper. We first give the following efficient algorithms for a chordal graph; (1) a linear-time
∗Department of Information and Computer Sciences, Toyohashi University of Technology, Hibarigaoka 1-1, Toyohashi, Aichi 441-8580,

Japan. E-mail:okamotoy@ics.tut.ac.jp
†National Institute of Informatics, Hitotsubashi 2-1-2, Chiyoda-ku, Tokyo 101-8430, Japan. E-mail:uno@nii.jp
‡School of Information Science, JAIST, Asahidai 1-1 , Nomi, Ishikawa 923-1292, Japan. E-mail:uehara@jaist.ac.jp

1

Table 1: Summary of the results. We denote the number of vertices and edges byn andm respectively. The
running times for enumeration algorithms refer to amortized time per output.

Chordal graphs Counting [ref.] Enumeration [ref.]
independent sets O(n + m) [this paper] O(1) [this paper]
maximum independent sets O(n + m) [this paper] O(1) [this paper]
independent sets of sizek O(k2(n + m)) [this paper] O(1) [this paper]
maximal independent sets #P-complete [this paper] O(n + m) [7, 16]
minimum maximal independent sets#P-complete [this paper]

algorithm to count the number of independent sets, (2) a linear-time algorithm to count the number of maximum
independent sets, and (3) a polynomial-time algorithm to count the number of independent sets of a given size. The
running time of the third algorithm is linear when the size is constant. Note that in general counting the number
of independent sets and the number of maximum independent sets in a graph is#P-complete [17], and counting
the number of independent sets of sizek in a graph is#W[1]-complete [9] (namely, intractable in a parameterized
sense). Let us also note that the time complexity here refers to the arithmetic operations, not to the bit operations.

The basic idea of these efficient algorithms is to invoke a clique tree associated with a chordal graph and
perform a bottom-up computation via dynamic programming on the clique tree. A clique tree is based on the
characterization of a chordal graph as an intersection graph of subtrees of a tree. Since a clique tree can be
constructed in linear time and the structure of clique tree is simple, this approach leads to simple and efficient
algorithms for the problems above. However, a careful analysis is necessary to obtain the linear-time complexity.

Along the same idea, we can also enumerate all independent sets, all maximum independent sets, and all
independent sets of constant size in a chordal graph inO(1) amortized time per output.

On the other hand, we show that the following counting problems are#P-complete: (1) counting the number
of maximal independent sets in a chordal graph, and (2) counting the number of minimum maximal independent
sets in a chordal graph. Using a modified reduction, we furthermore show that the problem to find a minimum
weighted maximal independent set isNP-hard. We also show that the problem is even hard to approximate. More
precisely speaking, there is no randomized polynomial-time approximation algorithm to find such a set within
a factor ofc ln |V|, for some constantc, unlessNP ⊆ ZTIME(nO(log logn)). This is in contrast with a linear-time
algorithm by Farber that finds a minimum weighted maximal independent set in a chordal graph when the weights
are 0 or 1 [8].

The organization of the paper is as follows. Section 2 introduces the concept of a clique tree. In Section 3,
we devise a linear-time algorithm for counting the number of independent sets, and in Section 4, we discuss
how to count the maximum independent sets in linear time. In Section 5, we provide an efficient algorithm for
counting the number of independent sets of each size simultaneously. In Section 6, we briefly describe how to
apply our method for counting to enumeration, which leads to constant amortized time algorithms. In Section 7,
we prove that counting the number of maximal independent sets and counting the number of minimum maximal
independent sets are hard. In Section 8, we modify the reduction in Section 7 to show that it is hard to find a
minimum weighted maximal independent set, and even hard to approximate.

Due to space limitation, some proofs are postponed to Appendix A.

2 Preliminaries

In this article, we assume that the reader has a moderate familiarity with graph theory. This section aims at fixing
the notation and introducing a chordal graph and concepts around that. LetG = (V,E) be a graph, which we
always assume to be simple and finite, and also we assume that graphs are connected without loss of generality.
Theneighborhoodof a vertexv in a graphG = (V,E) is the setNG(v) = {u ∈ V | {u, v} ∈ E}. For a vertex subset
U of V, we denote byNG(U) the set{v ∈ V | v ∈ N(u) for someu ∈ U}. If no confusion can arise we will omit
the subscriptG. We denote the closed neighborhoodN(v) ∪ {v} by N[v]. A vertex setI is an independent setof
G if any pari of vertices inI is not an edge ofG, and a vertex setC is aclique if every pair of vertices inC is an
edge ofG. An independent set ismaximumif it has the largest size among all independent sets. An independent
set ismaximalif none of its proper supersets is an independent set. An independent set isminimum maximalif it
is maximal and has the smallest size among all maximal independent sets. A maximum clique, a maximal clique
and a minimum maximal clique are defined analogously. An edge which joins two vertices of a cycle but is not

2

itself an edge of the cycle is achordof the cycle. A graph ischordal if each cycle of length at least 4 has a chord.
To a chordal graphG = (V,E), we associate a treeT, called aclique treeof G, satisfying the following two

properties. (A) The nodes ofT are the maximal cliques ofG. (B) For every vertexv of G, the subgraphTv of T
induced by the maximal cliques containingv is a tree. (In the literature, the condition (A) is sometimes weakened
as each node is a vertex subset ofG.) It is well known that a graph is chordal if and only if it has a clique tree,
and in such a case a clique tree can be constructed in linear time. Some details are explained in books [3, 19]. The
following property is important in the running time analysis of our algorithms.

Lemma 1 Let G = (V,E) be a chordal graph, and denote byK the family of maximal cliques ofG. Then, it holds
that

∑
K∈K |K| = O(|V| + |E|).

3 Linear-Time Algorithm to Count the Independent Sets

In this section, we describe an algorithm for counting the number of independent sets in a chordal graph. The
basic idea of our algorithm is to divide the input graph into subgraphs induced by subtrees of the clique tree. Any
two of these subtrees share a vertex of a clique if they are disjoint in the clique tree. This property is very powerful
for counting the number of independent sets since any independent set can include at most one vertex of a clique.
We compute the number of independent sets including each vertex of the clique, or no vertex of the clique by
using the recursions.

First, we introduce some notations and state some lemmas. Given a chordal graphG = (V,E), we construct a
clique treeT of G. We now pick up any node in the clique treeT, regard the node as the root ofT, and denote it
by Kr . This is what we call arooted clique tree. For a maximal cliqueK in a chordal graphG and a rooted clique
treeT of G, a maximal cliqueK′ in G is adescendantof K (with respect toT) if K′ is a descendant ofK in T.
For convenience, we considerK itself a descendant ofK as well, and when no confusion arises we omit saying
“with respect toT.” Let (K) be the parent ofK in T. For convenience, we define(Kr) by ∅. We denote by
T(K) the subtree ofT rooted at the node corresponding to the maximal cliqueK. Let G(K) denote the subgraph
of G induced by the vertices included in at least one node inT(K). Observe thatG(K) is a chordal graph of which
T(K) is a clique tree.

For a graphG, letIS(G) be the family of independent sets inG. For a vertexv, letIS(G, v) be the family of
independent sets inG includingv, i.e.,IS(G, v) := {S | S ∈ IS(G), v ∈ S}. For a vertex setU, letIS(G,U) be
the family of independent sets inG including no vertex ofU, i.e.,IS(G,U) := {S | S ∈ IS(G),S ∩ U = ∅}.
Lemma 2 Let G be a chordal graph andT be a rooted clique tree ofG. Choose a maximal cliqueK of G, and let
K1, . . . ,K` be the children ofK in T. (If K is a leaf of the clique tree, we set` := 0.) Furthermore letv ∈ K and
S ⊆ V(G(K)). Then,S ∈ IS(G(K), v) if and only if S is represented by the union of{v} andS1, . . . ,S` such that
Si ∈ IS(G(Ki), v) if v belongs toKi , andSi ∈ IS(G(Ki),K ∩Ki) otherwise. Furthermore, such a representation is
unique.

Proof. Assume thatS ∈ IS(G(K), v). Let Si := S ∩ G(Ki) for every i ∈ {1, . . . , `}. Then,S includes the
union of {v} andS1, . . . ,S`. Let us show the converse inclusion. Choose an arbitrary vertexx ∈ S. If x = v,
then x is certainly included in the union of{v} andS1, . . . ,S`. Otherwise, we havex ∈ V(G(K)) \ K. Since
V(G(K)) = K ∪⋃`

i=1 V(G(Ki)), the vertexx belongs toSi for somei ∈ {1, . . . , `}. Therefore,S is included in the
union of {v} andS1, . . . ,S`. Now, we need to show that for everyi ∈ {1, . . . , `} the setSi satisfies the property
required in the lemma. Fixi ∈ {1, . . . , `}. If v belongs toKi , thenSi belongs toIS(G(Ki), v) sincev also belongs
to S. If v < Ki , thenSi belongs toIS(G(Ki),K ∩Ki) sincev is adjacent to all vertices ofK ∩Ki . Thus the required
property is satisfied. This completes the proof of the only-if part.

Next, we prove the if part. Assume thatS is the union of{v} andS1, . . . ,S` satisfying thatSi ∈ IS(G(Ki), v)
if v ∈ Ki , andSi ∈ IS(G(Ki),K ∩ Ki) otherwise. Whenv ∈ Ki , sincev is adjacent to all vertices ofK \ {v}, every
vertex inSi \ {v} belongs toV(G(Ki)) \ K. Whenv < Ki , by the definition ofIS(G(Ki),K ∩ Ki), every vertex in
Si \{v} belongs toV(G(Ki))\K. Therefore, for eachi ∈ {1, . . . , `} it holds thatSi \{v} ⊆ V(G(Ki))\K. This implies
thatS\ {v} ⊆ V(G(K)) \K. Now, we show that for everyi, j ∈ {1, . . . , `}, i , j, (Si \ {v})∪ (S j \ {v}) is independent.
To show that, suppose not. SinceSi andS j are independent, there must be an edge{x, y} ∈ E such thatx ∈ Si \ {v}
andy ∈ S j \ {v}. Since{x, y} is an edge ofG, it is included in some maximal clique ofG. Then, the definition of
a clique tree implies thatx or y belongs toK. Without loss of generality, assume thatx belongs toK. (Remember
that x ∈ Si \ {v}.) If Si ∈ IS(G(Ki), v), thenSi ∩ K ⊇ {v, x}. This is a contradiction toSi being independent. If
Si ∈ IS(G(Ki),K ∩ Ki), thenSi cannot contain any vertex ofK, particularlyx. This is also a contradiction. Thus

3

the claim is verified, and it implies thatS \ {v} is an independent set ofG(K). Together with the observation that
no vertex ofG(Ki) \ K is adjacent tov if v < Ki , this further implies thatS is an independent set ofG(K). Since
v ∈ S, this shows thatS ∈ IS(G(K), v).

To show the uniqueness, suppose thatS is the union of{v},S1, . . . ,S` and also the union of{v},S′1, . . . ,S′` such
that there existsi with Si , S′i . Without loss of generality assume thatSi \ S′i , ∅. Choose a vertexu ∈ Si \ S′i ,
whereu , v. Then, there must existj , i with u ∈ S′j . Hence, there exists a nodeL ∈ T(Ki) such thatu ∈ L and
a nodeL′ ∈ T(K j) such thatu ∈ L′. (Note thatL andL′ are maximal cliques ofG.) Then, by Property (B) in the
definition of a clique tree, the nodes on the path connectingL andL′ in T containu. In particular we haveu ∈ K.
Therefore,u andv belong to the cliqueK and at the same time they belong to the independent setS. This is a
contradiction.

By a close inspection of the proof above, we can observe that for everyi, j ∈ {1, . . . , `}, i , j, it holds that
V(G(Ki)) \ K is disjoint fromV(G(K j)) \ K. This property gives a nice decomposition of the problem into several
independent parts, and enables us to perform the dynamic programming on a clique tree.

By similar discussion as above, we obtain the following lemma.

Lemma 3 Let G be a chordal graph andT be a rooted clique tree ofG. Choose a maximal cliqueK of G, and let
K1, . . . ,K` be the children ofK in T. (If K is a leaf of the clique tree, we set` := 0.)
1. We haveS ∈ IS(G(K),K) if and only if S is the union ofS1, . . . ,Sl such thatSi ∈ IS(G(Ki),K ∩ Ki).
Furthermore, such a representation is unique.
2. For eachi ∈ {1, . . . , `}, we haveSi ∈ IS(G(Ki),K ∩ Ki) if and only if Si belongs either toIS(G(Ki), v) for
somev ∈ Ki \ K or toIS(G(Ki),Ki). Furthermore,Si belongs to exactly one of them.

From these lemmas, we have the following recursive equations forIS.

Equations 1 Let G be a chordal graph andT be a rooted clique tree ofG. For a maximal cliqueK of G which is
not a leaf of the clique tree, letK1, . . . ,K` be the children ofK in T. Furthermore, letv ∈ K. Then, the following
identities hold. (We remind thaṫ∪ means “disjoint union.”)

IS(G(K)) = IS(G(K),K) ∪̇
⋃̇

v∈K
IS(G(K), v);

IS(G(K), v) = {S ∪ {v} | S =
⋃̀

i=1

Si ,Si ∈
{ IS(G(Ki), v) if v ∈ Ki

IS(G(Ki),K ∩ Ki) otherwise

}
};

IS(G(K),K) = {S | S =
⋃̀

i=1

Si ,Si ∈ IS(G(Ki),K ∩ Ki)};

IS(G(Ki),K ∩ Ki) = IS(G(Ki),Ki) ∪̇
⋃̇

u∈Ki\K
IS(G(Ki),u) for eachi ∈ {1, . . . , `}.

These equations lead us to the algorithm in Figure 1 to count the number of independent sets in a chordal graph.
For a maximal cliqueK of a chordal graphG, we denote the set of children ofK in a rooted clique tree ofG by
(K).

Theorem 4 The algorithm#IndSets outputs the number of independent sets in a chordal graphG = (V,E) in
O(|V| + |E|) time.

Proof. From Equations 1, the algorithm correctly computes the number of independent sets inG. Let
us consider the computation timet(K) taken by a call to#IndSetsIter(K). The overall running time
of #IndSets is t(Kr) + O(|Kr |). Steps 7 and 8 takeO(t(K′)) and O(|K′|) time for eachK′ ∈ (K)
respectively. Step 9 can be done inO(|(K)|). Next, we analyze the computation time for Step

10. Since
∣∣∣∣IS(G(K),K)

∣∣∣∣ =
∏

K′∈(K)

∣∣∣∣IS(G(K′),K ∩ K′)
∣∣∣∣, we have that

∏
K′∈(K),v∈K′ |IS(G(K′), v)| ×

∏
K′∈(K),v<K′

∣∣∣∣IS(G(K′),K ∩ K′)
∣∣∣∣ =

∣∣∣∣IS(G(K),K)
∣∣∣∣ ×

∏
K′∈(K),v∈K′ |IS(G(K′),v)|

∏
K′∈(K),v∈K′

∣∣∣∣IS(G(K′),K∩K′)
∣∣∣∣
, and we use this equation in

Step 10. Then|IS(G(K), v)| can be computed inO(|{K′ ∈ (K) | v ∈ K′}|) time, thus Step 10 can be done in
O(

∑
v∈K |{K′ ∈ (K) | v ∈ K′}|) time. Therefore, the accumulated time taken by a call to#IndSetsIter(Kr) is∑

K′∈(Kr)(O(t(K′)) + O(|K′|)) + O(|(Kr)|) + O(
∑

v∈Kr
|{K′ ∈ (Kr) | v ∈ K′}|). By expandingt(K′) inside the

sum, we can see that this is at mostO(
∑

K∈K (|K|+∑
v∈K |{K′ ∈ (K) | v ∈ K′}|)),whereK denotes the set of nodes

4

Algorithm 1 : #IndSets
Input : A chordal graphG = (V,E);
Output : The number of independent sets inG;
construct a rooted clique treeT of G with root Kr ;1

call #IndSetsIter(Kr);2

return
∣∣∣∣IS(G,Kr)

∣∣∣∣ +
∑

v∈Kr |IS(G(Kr), v)|.3

Procedure #IndSetsIter(K)
Input : A maximal cliqueK of the chordal graphG;
if K is a leaf ofT then4

set
∣∣∣∣IS(G(K),K)

∣∣∣∣ := 0 and|IS(K, v)| := 1 for eachv ∈ K;5

else6

foreachchild K′ of K do call #IndSetsIter(K′);7

foreachchild K′ of K do compute
∣∣∣∣IS(G(K′),K ∩ K′)

∣∣∣∣ by
∣∣∣∣IS(G(K′),K′)

∣∣∣∣ +
∑

u∈K′\K |IS(G(K′),u)| ;8

compute
∣∣∣∣IS(G(K),K)

∣∣∣∣ by
∏

K′∈(K)

∣∣∣∣IS(G(K′),K ∩ K′)
∣∣∣∣;9

foreachv ∈ K do compute|IS(G(K), v)| by
∏

K′∈(K),v∈K′ |IS(G(K′), v)| ×∏
K′∈(K),v<K′

∣∣∣∣IS(G(K′),K ∩ K′)
∣∣∣∣ .10

Figure 1: Algorithm to count the number of independent sets in a chordal graph.

in the clique tree, i.e., the family of maximal cliques ofG. By Lemma 1, we have
∑

K∈K |K| = O(|V| + |E|). Fur-
thermore, it follows that

∑
K∈K

∑
v∈K |{K′ ∈ (K) | v ∈ K′}| = ∑

v∈V |{K′ ∈ K | v ∈ K′}| = ∑
K∈K |K| = O(|V|+ |E|)

again by Lemma 1. Hence, the overall running time isO(|V| + |E|).

4 Linear-Time Algorithm to Count the Maximum Independent Sets

In this section, we modify Algorithm#IndSets to count the number of maximum independent sets in a chordal
graph. For a set familyS, we denote by max(S) the cardinality of a largest set inS, and argmax(S) denotes the
family of largest sets inS. For a graphG, letMIS(G) be the family of maximum independent sets inG. For a
vertexv, letMIS(G, v) be the family of maximum independent sets inG includingv, i.e.,MIS(G, v) := {S ∈
MIS(G) | v ∈ S}. For a vertex setU, letMIS(G,U) be the family of maximum independent sets inG including
no vertex ofU, i.e.,MIS(G,U) := {S ∈ MIS(G) | S ∩ U = ∅}.

From lemmas stated in the previous section and Equations 1, we immediately have the following equations.

Equations 2 With the same set-up as Equations 1, the following identities hold.

MIS(G(K)) = argmax(MIS(G(K),K) ∪̇
⋃̇

v∈K
MIS(G(K), v));

MIS(G(K), v) = argmax({S | S =
⋃̀

i=1

Si ,Si ∈
{ MIS(G(Ki), v) if v ∈ Ki

MIS(G(Ki),K ∩ Ki) otherwise

}
});

MIS(G(K),K) = argmax({S | S =
⋃̀

i=1

Si ,Si ∈ MIS(G(Ki),K ∩ Ki)});

MIS(G(Ki),K ∩ Ki) = argmax(MIS(G(Ki),Ki) ∪̇
⋃̇

u∈Ki\K
MIS(G(Ki),u)).

Since the sets of each family on the left hand side have the same size in each equation, the cardinality of the set can
be computed in the same order as Algorithm#IndSets. For example,MIS(G(K)) can be computed as follows.

1. SetN := 0 andM := max(MIS(G(K),K) ∪⋃
v∈KMIS(G(K), v));

2. if the size of a member ofMIS(G(K),K) is equal toM, thenN := N +
∣∣∣∣MIS(G(K),K)

∣∣∣∣;
3. for eachv ∈ K, if the size of a member ofMIS(G(K), v)) is equal toM, thenN := N + |MIS(G(K), v))|;
4. outputN.

5

In this way we have the following theorem.

Theorem 5 The number of maximum independent sets in a chordal graphG = (V,E) can be computed inO(|V|+
|E|) time.

5 Efficient Algorithm to Count the Independent Sets of Sizek

In this section, we modify Algorithm#IndSets to count the number of independent sets of sizek. For a graph
G and a numberk, let IS(G; k) be the family of independent sets inG of sizek. For a vertexv, let IS(G, v; k)
be the family of independent sets inG of sizek including v, i.e.,IS(G, v; k) := {S ∈ IS(G; k) | v ∈ S}. For
a vertex setU, let IS(G,U; k) be the family of independent sets inG of sizek including no vertex ofU, i.e.,
IS(G,U; k) = {S ∈ IS(G; k) | S ∩ U = ∅}.

From lemmas stated in Section 3 and Equations 1, we immediately obtain the following equations.

Equations 3

IS(G(K); k) = IS(G(K),K; k) ∪̇
⋃̇

v∈K
IS(G(K), v; k);

IS(G(K), v; k) = {S | S =
⋃̀

i=1

Si , |S| = k,Si ∈
{ IS(G(Ki), v) if v ∈ Ki

IS(G(Ki),K ∩ Ki) otherwise

}
};

IS(G(K),K; k) = {S | S =
⋃̀

i=1

Si , |S| = k,Si ∈ IS(G(Ki),K ∩ Ki)};

IS(G(Ki),K ∩ Ki ; k) = IS(G(Ki),Ki ; k) ∪̇
⋃̇

u∈Ki\K
IS(G(Ki),u; k).

In contrast to Equations 1, the second and third equations of Equations 3 do not give a straightforward way to

compute|IS(G(K), v; k)| and
∣∣∣∣IS(G(K),K; k)

∣∣∣∣, respectively, since we have to count the number of combinations
of S1, . . . ,S` which generate an independent set of sizek. To compute them, we use a more detailed algorithm.

Here we only explain a method to compute|IS(G(K), v; k)| since
∣∣∣∣IS(G(K),K; k)

∣∣∣∣ can be computed in a
similar way. Fix an arbitrary vertexv ∈ K. Then, according tov, we give indices to the children ofK such that
K1, . . . ,Kp includev andKp+1, . . . ,K` do not. Fork′ ≤ k and`′ ≤ p, let N(`′; k′) := {S | S =

⋃`′
i=1 Si ,Si ∈

IS(Ki , v), |S| = k′}. Fork′ ≤ k and`′ ≥ p + 1, letN(`′; k′) := {S | S =
⋃`

i=`′ Si ,Si ∈ IS(Ki ,Ki \ K), |S| = k′}.
Then, it holds that|IS(G(K), v; k)| = ∑k

h=0(|N(p; h)| ×
∣∣∣N(p + 1;k− h)

∣∣∣).
For each̀ ′ andk′, |N(`′; k′)| can be computed inO(k× p) time based on the following recursive equation:

∣∣∣N(`′; k′)
∣∣∣ =

{ ∑k′
h=0 |N(`′ − 1;h)| × |IS(G(K`′), v; k′ − h)| if `′ > 1,
|IS(G(K1), v; k′)| otherwise.

Similarly,
∣∣∣N(`′; k′)

∣∣∣ can be computed inO(k′) time. The computation of|N(`′; k′)| and
∣∣∣N(`′; k′)

∣∣∣ for all
combinations of̀ ′ andk′ can be done inO(k2|(K)|) time, thus we can count the number of independent sets
of sizek in a chordal graph inO(k2|V|2) time. In the following, we reduce the computation time by the same
technique used in the previous sections.

Observe that
∣∣∣∣IS(G(K),K; k′)

∣∣∣∣ =
∑k′

h=0

∣∣∣N(p; h)
∣∣∣ ×

∣∣∣N(p + 1;k′ − h)
∣∣∣, which gives

∣∣∣N(p + 1;k′)
∣∣∣ ×

∣∣∣N(p; 0)
∣∣∣ =

∣∣∣∣IS(G(K),K; k′)
∣∣∣∣ − ∑k′

h=1

∣∣∣N(p; h)
∣∣∣ ×

∣∣∣N(p + 1;k′ − h)
∣∣∣. This implies that we can compute

∣∣∣N(k′; p + 1)
∣∣∣ from

∣∣∣∣IS(G(K),K; h)
∣∣∣∣ and

∣∣∣N(p; h)
∣∣∣ in the increasing order ofk′. The computation time for

this task isO(k× p).
In summary, we can compute|IS(G(K), v; k′)| for all v ∈ K and k′ ∈ {0, . . . , k} in

O(k2 ∑
v∈K |{K′ ∈ (K) | v ∈ K′}|) time. Therefore, the total computation time over all iterations can be bounded

in the same way as the above section, and we obtain the following theorem.

Theorem 6 1. The number of independent sets of sizek in a chordal graphG = (V,E) can be computed in
O(k2(|V| + |E|)) time.

2. The numbers of independent sets of all sizes from 0 to|V| in a chordal graphG = (V,E) can be simultane-
ously computed inO(|V|2(|V| + |E|)) time.

6

6 Enumeration

Equations 1 in Section 3 directly give the following algorithm for enumerating the independent sets of a given
chordal graph, in which each procedure corresponds to an equation of Equations 1.

Algorithm 3 : EnumIS(G)
Input : a chordal graphG = (V,E);
Output : all independent sets inG;
construct a clique treeT of G with root K;1

foreachu ∈ K do enumerate all independent sets inIS(G,u) by EnumIS2(K,u);2

enumerate all independent sets inIS(G,K) by EnumIS3(K).3

Procedure EnumIS2(K,u)
Input : A maximal cliqueK of G, a vertexu ∈ K;
if K has no childthen4

output {u}; //output an independent set if the bottom level is reached5

else6

foreachchild Ki of K such thatu ∈ Ki do enumerate all independent sets inIS(G(Ki),u) by EnumIS2(Ki ,u);7

foreachchild Ki of K such thatu < Ki do enumerate all independent sets inIS(G(Ki),K ∩ Ki) by EnumIS4(Ki);8

output all independent sets inIS(G(K),u) by combining the independent sets inIS(G(Ki),u) and in9

IS(G(K j),K ∩ K j) for all i, j;

Procedure EnumIS3(K)
Input : A maximal cliqueK of G;
if K has no childthen10

output ∅; //output an independent set if the bottom level is reached11

else12

foreachchild Ki of K do enumerate all independent sets inIS(G(Ki),K ∩ Ki) by EnumIS4(Ki);13

output all independent sets inIS(G(K),K) by combining the independent sets inIS(G(Ki),K ∩ Ki);14

Procedure EnumIS4(K)
Input : A maximal cliqueK of G;
call EnumIS3(K);15

foreachu ∈ K \ (K) do enumerate all independent sets inIS(G(K),u) by EnumIS2(G(K),u);16

output all independent sets inIS(G(K),K ∩ (K)) by combining the independent sets inIS(G(K),u);17

From the lemmas and theorems in the previous sections,EnumIS(G) surely enumerates all independent sets
in G. However, we cannot bound its time complexity by constant for each output. In the following, we present a
slight modification to obtain a constant-time enumeration algorithm.

Let us consider the computation tree of this algorithm. Acomputation treeis a rooted-tree representation of
a recursive structure, in which the vertices are recursive calls, and the edges connect two vertices if and only if
one vertex recursively calls the other. We define aniteration of the algorithm by the operations done in a vertex
of the computation tree. In other words, an iteration is the computation in some procedureP recursively called by
another procedure, in which the computation in the recursive calls generated byP is excluded.

We first reduce the number of iterations by the following two modifications. (1) If an iterationI generated by
an iterationIp recursively calls just one iterationIc, then we modify the algorithm so thatIp recursively callsIc

directly. (2) If an iterationI outputs just one independent set, then mergeI and the iteration which recursively
calls I into one.

For a given chordal graphG = (V,E) and a rooted clique tree ofG, the number of possible inputs for each
procedure is at mostO(|E|), as in our counting algorithms. Thus, we can enumerate all of these cases inO(|E|)
time, and keep the results of modifications (1) and (2) in the memory. It can be done as a preprocessing within
O(|E|) time.

By these modifications, we can see that any iteration which is a leaf of the computation tree outputs at least
two independent sets, thus the number of iterations is not greater than the number of independent sets inG. We
can also see that if an iteration outputs just one independent set, then, the input clique must be a leaf of the clique
tree. Hence, the size of the output independent set is at most one.

7

We next consider how to compute all combinations of independent sets in, for example, Step 9 of the algo-
rithm. In the procedures, the independent sets forK are generated by combining the independent recursive calls
for several maximal cliques, sayK1 and K2. This step can be implemented as follows. First, we compute an
indenendent setI1 for K1, and for thisI1, we compute all independent setsI2 for K2, and outputI1 ∪ I2. Next we
compute another independent setI ′1 for K1, and compute all independent setsI2 for K2, and outputI1 ∪ I2, then
compute yet another independent set forK1, and so on. Then the computation time in one iteration is proportional
to (the number of recursive calls generated) times (the maximum number of vertices added to the current inde-
pendent set). Because of modification (2), any iteration adds at most one vertex to the current independent set.
Therefore, the total time complexity of the algorithm is linear in the number of independent sets.

Theorem 7 All independent sets in a chordal graph can be enumerated in constant time for each on average with
additionalO(|V| + |E|) time for preprocessing.

Similar algorithms can be developed to enumerate the maximum independent sets and the independent sets
of sizek. However, some iterations may add to the current independent set several vertices not bounded by a
constant. Since there are at most|E| kinds of inputs for each procedure, we can enumerate all such sets of vertices
that will be added in an iteration, and put an identical name to each set of vertices in short time. By adding the
name instead of adding vertices in a vertex set, we can execute the addition in constant time. Thus, the maximum
independent sets and the independent sets of sizek can be enumerated in constant time for each on average with
additionalO((|V| + |E|)|V|2) time for preprocessing.

7 Hardness of Counting the Maximal Independent Sets

In this section, we show the hardness results for counting the number of maximal independent sets in a chordal
graph. Although finding a maximal independent set is easy even in a general graph, we show that the counting
version of the problem is actually hard.

Theorem 8 Counting the number of maximal independent sets in a chordal graph is#P-complete.

The proof is based on a reduction from the counting problem of the number of set covers. LetX be a finite set,
andS ⊆ 2X be a family of subsets ofX. A set coverof X is a subfamilyF ⊆ S such that

⋃F = X. Counting the
number of set covers is#P-complete [17].
Proof of Theorem 8. The membership in#P is immediate. To show the#P-hardness, we use a polynomial-time
reduction of the problem for counting the number of set covers to our problem.

Let X be a finite set andS ⊆ 2X be a family of subsets ofX, and consider them as an instance of the set cover
problem. Let us putS := {S1, . . . ,St}. FromX andS, we construct a chordal graphG = (V,E) in the following
way.

We setV := X ∪ S ∪ S′, whereS′ := {S′1, . . . ,S′t }. Namely,S′ is a copy ofS. Now, we draw edges. There
are three kinds of edges. (1) We connect every pair of vertices inX by an edge. (2) For everyS ∈ S, we connect
x ∈ X andS by an edge if and only ifx ∈ S. (3) For everyS ∈ S, we connectS andS′ (a copy ofS) by an edge.
Formally speaking, we defineE := {{x, y} | x, y ∈ X} ∪ {{x,S} | x ∈ X,S ∈ S, x ∈ S} ∪ {{S,S′} | S ∈ S}. This
completes our construction. Note that this construction can be done in polynomial time.

First, let us check that the constructed graphG is indeed chordal. LetC be a cycle of length at least four in
G. Since the degree of a vertex inS′ is one, they do not take part in any cycle ofG. So forget them. SinceS is
an independent set ofG, vertices inS cannot appear alongC in a consecutive manner. Then, since the length of
C is at least four, there have to be at least two vertices ofX which appear inC not consecutively. Then, these two
vertices give a chord sinceX is a clique ofG. Hence,G is chordal.

Now, we look at the relation between the set covers ofX and the maximal independent sets ofG. Let U be a
maximal independent set ofG. We distinguish two cases.
Case 1.Consider the case in whichU contains a vertexx ∈ X. SinceX is a clique ofG, U cannot contain any
other vertices ofX. Let Gx := G \ NG[x]. (Remember thatNG[x] is the closed neighborhood ofx, i.e., the set of
vertices adjacent tox in G andx itself.) By the construction, we have thatV(Gx) = {S ∈ S | x < S} ∪ S′ and
E(Gx) = {{S,S′} | S ∈ S, x < S}. Then, a vertexS′ ∈ S′ such thatx ∈ S is an isolated vertex ofGx. Therefore,
this vertex must belong toU by the maximality ofU. For eachS ∈ S such thatx < S, U must contain eitherS or
S′, but not both. This means that the number of maximal independent sets containingx is exactly 2|{S∈S|x<S}|.
Case 2.Consider the case in whichU contains no vertex ofX. Then, for eachS ∈ S, due to the maximality,U
must contain eitherS or S′. Furthermore,U ∩S has to be a set cover ofX (otherwise an element ofX not covered

8

by U ∩ S could be included inU). Hence, the number of maximal independent sets containing no vertex ofX is
equal to the number of set covers ofX.

To summarize, we obtained that the number of maximal independent sets ofG is equal to the number of set
covers ofX plus

∑
x∈X 2|{S∈S|x<S}|. Since the last sum can be computed in polynomial time, this concludes the

reduction.
As a variation, let us consider the problem for counting the minimum maximal independent sets in a chordal

graph. Note that a minimum maximal independent set in a chordal graph can be found in polynomial time [8]. In
contrast to that, the counting version is hard.

Theorem 9 Counting the minimum maximal independent sets in a chordal graph is#P-complete.

Proof. We use the same reduction as in the proof of Theorem 8. Look at the case distinction in that proof again.
The maximal independent sets arising from Case 1 have|S| + 1 elements, while the maximal independent sets
from Case 2 have|S| elements. Therefore, the minimum maximal independent sets of the graphG constructed in
that proof are exactly the maximal independent sets arising from Case 2, which precisely correspond to the set
covers ofX.

8 Hardness of Finding a Minimum Weighted Maximal Independent Set

In this section, we consider an optimization problem to find a minimum weighted maximal independent set in a
chordal graph. Namely, given a chordal graphG and a weight for each vertex, we are asked to find a maximal
independent set ofG with minimum weight. Here, the weight of a vertex subset is the sum of the weights of its
vertices.

Notice that there is a linear-time algorithm for this problem when the weight of each vertex is zero or one [8].
On the contrary, we show that the problem is actually hard when the weight is arbitrary.

Theorem 10 Finding a minimum weighted maximal independent set in a chordal graph isNP-hard.

The proof is similar to what we saw in the previous section. We use the optimization version of the set cover
problem, namely the minimum set cover problem. It is known that the minimum set cover problem isNP-hard.

Proof of Theorem 10. For a given instance of the minimum set cover problem, we use the same construction of a
graphG as in the proof of Theorem 8. We define a weight functionw as follows:w(x) := 2|S|+ 1 for everyx ∈ X;
w(S) := 2 for everyS ∈ S; w(S′) := 1 for everyS′ ∈ S′. This completes the construction.

Now, observe thatS is a maximal independent set of the constructed graphG, and the weight ofS is 2|S|.
Therefore, no element ofX takes part in any minimum weighted maximal independent set ofG. Then, from the
discussion in the proof of Theorem 8, ifM is a maximal independent set ofG satisfyingM ∩X = ∅, thenM ∩S is
a set cover ofX. The weight ofM is |M ∩ S| + |S|. Therefore, ifM is a minimum weighted independent set ofG,
thenM minimizes|M ∩ S|, which is the size of a set cover. Hence,M ∩S is a minimum set cover. This concludes
the reduction.

We can further show the hardness to get an approximation algorithm running in polynomial time. The precise
statement is as follows.

Theorem 11 There is no randomized polynomial-time algorithm for the minimum weight maximal indepen-
dent set problem in a chordal graph with approximation ratioc ln |V|, for some fixed constantc, unlessNP ⊆
ZTIME(nO(log logn)).

Remark thatZTIME(t) is the class of languages which have a randomized algorithm running in expected time
t with zero error.

Acknowledgement The authors are grateful to L. Shankar Ram for pointing out a paper [5].

References

[1] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the Desirability of Acyclic Database Schemes.Journal
of the ACM, 30:479–513, 1983.

9

[2] J.R.S. Blair and B. Peyton. An Introduction to Chordal Graphs and Clique Trees. InGraph Theory and
Sparse Matrix Computation, volume 56 ofIMA, pages 1–29. (Ed. A. George and J.R. Gilbert and J.W.H.
Liu), Springer, 1993.

[3] A. Brandsẗadt, V.B. Le, and J.P. Spinrad.Graph Classes: A Survey. SIAM, 1999.
[4] P. Buneman. A Characterization of Rigid Circuit Graphs.Discrete Mathematics, 9:205–212, 1974.
[5] L.S. Chandran. A Linear Time Algorithm for Enumerating All the Minimum and Minimal Separators of a

Chordal Graph.COCOON 2001, pages 308–317. LNCS Vol. 2108, Springer-Verlag, 2001.
[6] L.S. Chandran, L. Ibarra, F. Ruskey, and J. Sawada. Generating and Characterizing the Perfect Elimination

Orderings of a Chordal Graph.Theoretical Computer Science, 307:303–317, 2003.
[7] D. Eppstein. All Maximal Independent Sets and Dynamic Dominance for Sparse Graphs. InProc. 16th Ann.

ACM-SIAM Symp. on Discrete Algorithms, ACM, 2005.
[8] M. Farber. Independent Domination in Chordal Graphs.Operations Research Letters, 1(4):134–138, 1982.
[9] J. Flum and M. Grohe. The Parameterized Complexity of Counting Problems.SIAM J. Comput., 33(4):892–

922, 2004.
[10] P. Frankl and R.M. Wilson. Intersection theorems with geometric consequences.Combinatorica, 1:357–368,

1981.
[11] D.R. Fulkerson and O.A. Gross. Incidence Matrices and Interval Graphs.Pacific J. Math., 15:835–855,

1965.
[12] F. Gavril. Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by Cliques, and Max-

imum Independent Set of a Chordal Graph.SIAM J. Comput., 1(2):180–187, 1972.
[13] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathematics 57.

Elsevier, 2nd edition, 2004.
[14] P.N. Klein. Efficient Parallel Algorithms for Chordal Graphs.SIAM J. Comput., 25(4):797–827, 1996.
[15] V.S. Anil Kumar, Sunil Arya, and H. Ramesh. Hardness of Set Cover with Intersection 1.ICALP 2000,

pages 624–635. LNCS Vol. 1853, Springer-Verlag, 2000.
[16] J.Y.-T. Leung. Fast Algorithms for Generating All Maximal Independent Sets of Interval, Circular-Arc and

Chordal Graphs.Journal of Algorithms, 5:22–35, 1984.
[17] J.S. Provan and M.O. Ball. The Complexity of Counting Cuts and of Computing the Probability that a Graph

is Connected.SIAM J. Comput., 12:777–788, 1983.
[18] D.J. Rose, R.E. Tarjan, and G.S. Lueker. Algorithmic Aspects of Vertex Elimination on Graphs.SIAM J.

Comput., 5(2):266–283, 1976.
[19] J.P. Spinrad.Efficient Graph Representations. American Mathematical Society, 2003.
[20] R.E. Tarjan and M. Yannakakis. Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclic-

ity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs.SIAM J. Comput., 13(3):566–579, 1984.
[21] S.P. Vadhan. The Complexity of Counting in Sparse, Regular, and Planar Graphs.SIAM J. Comput.,

31(2):398–427, 2001.

10

A Omitted Proofs

Proof of Lemma 1. To prove Lemma 1, we use more notions. Given a graphG = (V,E), a vertexv ∈ V is
simplicial in G if NG(v) is a clique inG. An orderingv1, . . . , vn of the vertices ofV is a perfect elimination
orderingof G if vi is simplicial in the subgraph induced by{vi , vi+1, . . . , vn} for all i = 1, . . . , n. It is known that a
graph is chordal if and only if it has a perfect elimination ordering [3, Section 1.2].

Take any perfect elimination orderingv1, v2, . . . , vn of G. LetC(vi) := NG[vi]∩{vi , vi+1, . . . , vn}. It is known that
for every maximal cliqueK of G there exists a vertexvi ∈ V such thatK = C(vi) holds [11]. SinceC(vi) ⊆ NG[vi],
we have|C(vi)| ≤ |NG[vi]| = 1 + degG(vi). Putting together, we obtain

∑
K∈K |K| ≤

∑
v∈V |C(v)| ≤ ∑

v∈V(1 +

degG(v)) = |V| + 2|E| = O(|V| + |E|).
Proof of Lemma 3. 1. Similar to Lemma 2. We omit.
2. First, assume thatSi ∈ IS(G(Ki), v) for somev ∈ Ki \ K. SinceKi is a clique,Si cannot include any vertex of
Ki \ {v}, particularly ofK ∩ Ki . Therefore,Si ∈ IS(G(Ki),K ∩ Ki). Secondly, assume thatSi ∈ IS(G(Ki),Ki).
Then,Si includes no vertex ofKi ∩ K, sinceKi ∩ K ⊆ Ki . Hence,Si ∈ IS(G(Ki),K ∩ Ki). This proves the if part.

Let us prove the only-if part and the uniqueness. Assume thatSi belongs toIS(G(Ki),Ki ∩ K). WhenSi

includes a vertexv of Ki \ K, we haveSi ∈ IS(G(Ki), v). Note thatv is a unique element inSi ∩ (Ki \ K) sinceSi

is an independent set andKi \ K is a clique. Therefore,Si < IS(G(Ki),u) for u ∈ (Ki \ K) \ {v}. WhenSi includes
no vertex ofKi \ K, it follows thatSi ∈ IS(G(Ki),Ki).

Proof of Theorem 11. We use the following variant of the minimum set cover problem in which the intersection
of every two sets has at most one element. We call the problem theminimum set cover problem with intersection
1.

Anil Kumar, Arya & Ramesh [15] showed that the minimum set cover problem with intersection 1 cannot be
approximated by any randomized polynomial-time algorithm with approximation ratioc′ ln |X|, for some constant
c′, unlessNP ⊆ ZTIME(nO(log logn)). We use this fact in our proof.

Before proving the theorem, we need a lemma which bounds the size ofS in an instance of the minimum set
cover problem with intersection 1. This is an easy special case of a theorem by Frankl & Wilson [10], which is
well known in extremal combinatorics. Hence we are not going to prove it.

Lemma 12 Let X be a finite set andS ⊆ 2X be a family of subsets ofX such that|A∩ B| ≤ 1 for everyA, B ∈ S
and∅ < S. Then,|S| ≤

(|X|+1
2

)
.

Now we are ready to prove Theorem 11.
Suppose that there exists a randomized polynomial-time algorithmA with approximation ratioc ln |V| for the

minimum weighted maximal independent set problem in a chordal graph. (The constantcwill be determined later.)
We use the algorithmA to get a polynomial-time algorithm with approximation ratioc′ ln |X| for the minimum set
cover problem with intersection 1. Then, this will imply thatNP ⊆ ZTIME(nO(log logn)).

Let X be a finite set andS ⊆ 2X be a nonempty family of subsets ofX such that|A∩ B| ≤ 1 for everyA, B ∈ S
and∅ < S. (We can assume∅ < S without loss of generality for an instance of the minimum set cover problem
with intersection 1 because the empty set covers no element.) From them, we construct a graphG exactly in the
same way as in the proof of Theorem 8. Settingα := dc ln(|X|(|X| + 2))e|S|, we define a weightw as follows:
w(x) := 2α2 + 1 for everyx ∈ X; w(S) := 2α for everyS ∈ S; w(S′) := 1 for everyS′ ∈ S′. This is our
construction. (Note that this construction can be done in polynomial time.)

Denote by OPT an arbitrary (fixed) minimum weighted maximal independent set ofG, by APX an output of the
algorithmA for G, and byw(OPT) andw(APX) the weights of them. Since the number of vertices inG is |X|+2|S|,
which is at most|X| + 2

(|X|+1
2

)
= |X|(|X| + 2) by Lemma 12, it follows thatw(APX) ≤ c ln(|X|(|X| + 2))w(OPT).

As in the proof of Theorem 10,S is a maximal independent set ofG and its weight is 2α|S|. Therefore, it
holds thatw(OPT)≤ 2α|S|.

Now, suppose that there exists an elementx ∈ X which is contained in APX. Then,w(APX) ≥ w(x) = 2α2 + 1.
This implies that 2α2 < w(APX) ≤ c ln(|X|(|X| + 2))w(OPT) ≤ dc ln(|X|(|X| + 2))e × 2α|S| = 2α2. This is a
contradiction. Thus, no elementx ∈ X belongs to APX. This means that APX∩ S is a set cover ofX. Let
C := APX ∩ S and we show thatC approximates the optimal value for the minimum set cover problem within a
factor ofc′ ln |X|.

Again, by the same argument as in the proof of Theorem 10, we getw(APX) = (2α − 1)|C| + |S|. Let C∗ be
a minimum set cover ofX. Then, similarly we getw(OPT) = (2α − 1)|C∗| + |S|. Sincew(APX) ≤ c ln(|X|(|X| +
2))w(OPT), it follows that (2α−1)|C|+ |S| ≤ c ln(|X|(|X|+2))((2α−1)|C∗|+ |S|) = c ln(|X|(|X|+2))(2α−1)|C∗|+α.

11

Hence, we obtain|C| ≤ c ln(|X|(|X| + 2))|C∗| + α−|S|
2α−1 ≤ c ln(|X|(|X| + 2))|C∗| + α− 1

2
2α−1 = c ln(|X|(|X| + 2))|C∗| + 1

2 ≤
c ln(|X|(|X| + 2))|C∗| + 1

2 ln(|X||X| + 2))|C∗| = (c + 1
2) ln(|X|(|X| + 2))|C∗| ≤ (c + 1

2) ln(|X|3)|C∗| = ((3c + 3
2) ln |X|)|C∗|.

Settingc = c′
3 − 1

2 gives an approximation ratio ofc′ ln |X|.

12

