Linear-Time Counting Algorithms for Independent Sets in
Chordal Graphs

Yoshio OkamotdTakeaki Undand Ryuhei Uehafa

Abstract

We study some counting and enumeration problems for chordal graphs, especially concerning independent
sets. We first provide the followingffecient algorithms for a chordal graph: (1) a linear-time algorithm for
counting the number of independent sets; (2) a linear-time algorithm for counting the number of maximum inde-
pendent sets; (3) a polynomial-time algorithm for counting the number of independent sets of a fixed size. With
similar ideas, we show that enumeration (namely, listing) of the independent sets, the maximum independent
sets, and the independent sets of a fixed size in a chordal graph can be done in constant amortized time per out-
put. On the other hand, we prove that the following problems for a chordal gragiParemplete: (1) counting
the number of maximal independent sets; (2) counting the number of minimum maximal independent sets. With
similar ideas, we also show that finding a minimum weighted maximal independent set in a chordal graph is
NP-hard, and even hard to approximate.

Keywords: chordal graph, counting, enumeration, independentNfeicompletenesstP-completeness, poly-
nomial time algorithm.

1 Introduction

How can we cope with computationally hard graph problems? There are several possible answers, and one of
them is to utilize the special graph structures arising from a particular context. This has been motivating the study
of special graph classes in algorithmic graph theory [3, 13]. This paper deals with counting and enumeration
problems from this perspective. Recently, counting and enumeration of some specified sets in a graph have been
widely investigated, e.g., in the data mining area. In general, however, from the graph-theoretic point of view, those
problems are hard even if input graphs are quite restricted. For example, counting the number of independent sets
in a planar bipartite graph of maximum degree #i®scomplete [21]. Therefore, we wonder what kind of graph
structures makes counting and enumeration problems tractable.

In this paper, we consider chordal graphschordal graphis a graph in which every cycle of length at least
four has a chord. From the practical point of view, chordal graphs have numerous applications in, for example,
sparse matrix computation (e.g., see Blair & Peyton [2]), relational databases [1], and computational biology
[4]. Chordal graphs have been widely investigated, and they are sometimes called triangulated graphs, or rigid
circuit graphs (see, e.g., Golumbic’s book [13, Epilogue 2004]). A chordal graph has various characterizations;
for example, a chordal graph is an intersection graph of subtrees of a tree, and a graph is chordal if and only if it
admits a special vertex ordering, called perfect elimination ordering [3]. Also, the class of chordal graphs forms a
wide subclass of perfect graphs [13].

It is known that many graph optimization problems can be solved in polynomial time for chordal graphs; to
list a few of them, the maximum weighted clique problem, the maximum weighted independent set problem, the
minimum coloring problem [12], the minimum maximal independent set problem [8]. There are also parallel algo-
rithms to solve some of these problenfiBaently [14]. However, relatively fewer problems have been studied for
enumeration and counting in chordal graphs; the only algorithms we are aware of are the enumeration algorithms
for all maximal cliques [11], all maximal independent sets [7, 16], all minimum separators and minimal separators
[5], and all perfect elimination orderings [6].

In this paper, we investigate the problems concerning the number of independent sets in a chordal graph. Table
1 lists the results of the paper. We first give the followifigogent algorithms for a chordal graph; (1) a linear-time

“Department of Information and Computer Sciences, Toyohashi University of Technology, Hibarigaoka 1-1, Toyohashi, Aichi 441-8580,
Japan. E-mailokamotoy@ics.tut.ac. jp

fNational Institute of Informatics, Hitotsubashi 2-1-2, Chiyoda-ku, Tokyo 101-8430, Japan. Eamséhii. jp
¥School of Information Science, JAIST, Asahidai 1-1 , Nomi, Ishikawa 923-1292, Japan. Easigika@jaist.ac.jp

Table 1: Summary of the results. We denote the number of vertices and edgesnloym respectively. The
running times for enumeration algorithms refer to amortized time per output.

Chordal graphs | Counting [ref] | Enumeration [ref]
independent sets O(n+ m) [this paper] O(1) [this paper]
maximum independent sets O(n+ m) [this paper] 0o(1) [this paper]
independent sets of sike O(k?(n+ m)) [this paper] O(1) [this paper]
maximal independent sets #P-complete [this paper] O(h+ m) [7, 16]

minimum maximal independent sets#P-complete [this paper

algorithm to count the number of independent sets, (2) a linear-time algorithm to count the number of maximum
independent sets, and (3) a polynomial-time algorithm to count the number of independent sets of a given size. The
running time of the third algorithm is linear when the size is constant. Note that in general counting the number
of independent sets and the number of maximum independent sets in a gi#pbdmplete [17], and counting

the number of independent sets of siza a graph is#W[1]-complete [9] (namely, intractable in a parameterized
sense). Let us also note that the time complexity here refers to the arithmetic operations, not to the bit operations.

The basic idea of thesefrient algorithms is to invoke a clique tree associated with a chordal graph and
perform a bottom-up computation via dynamic programming on the clique tree. A clique tree is based on the
characterization of a chordal graph as an intersection graph of subtrees of a tree. Since a clique tree can be
constructed in linear time and the structure of clique tree is simple, this approach leads to simpiécemd e
algorithms for the problems above. However, a careful analysis is hecessary to obtain the linear-time complexity.

Along the same idea, we can also enumerate all independent sets, all maximum independent sets, and all
independent sets of constant size in a chordal gra@{1) amortized time per output.

On the other hand, we show that the following counting problemgRreomplete: (1) counting the number
of maximal independent sets in a chordal graph, and (2) counting the number of minimum maximal independent
sets in a chordal graph. Using a modified reduction, we furthermore show that the problem to find a minimum
weighted maximal independent seNB-hard. We also show that the problem is even hard to approximate. More
precisely speaking, there is no randomized polynomial-time approximation algorithm to find such a set within
a factor ofcln|V|, for some constant, unlessNP C ZTIME(n®(°9'°9m) " This is in contrast with a linear-time
algorithm by Farber that finds a minimum weighted maximal independent set in a chordal graph when the weights
are O or 1[8].

The organization of the paper is as follows. Section 2 introduces the concept of a clique tree. In Section 3,
we devise a linear-time algorithm for counting the number of independent sets, and in Section 4, we discuss
how to count the maximum independent sets in linear time. In Section 5, we providécené algorithm for
counting the number of independent sets of each size simultaneously. In Section 6, we briefly describe how to
apply our method for counting to enumeration, which leads to constant amortized time algorithms. In Section 7,
we prove that counting the number of maximal independent sets and counting the number of minimum maximal
independent sets are hard. In Section 8, we modify the reduction in Section 7 to show that it is hard to find a
minimum weighted maximal independent set, and even hard to approximate.

Due to space limitation, some proofs are postponed to Appendix A.

2 Preliminaries

In this article, we assume that the reader has a moderate familiarity with graph theory. This section aims at fixing
the notation and introducing a chordal graph and concepts around thaG kefV, E) be a graph, which we
always assume to be simple and finite, and also we assume that graphs are connected without loss of generality.
The neighborhoof a vertexv in a graphG = (V, E) is the setNg(V) = {u € V | {u,Vv} € E}. For a vertex subset

U of V, we denote byNg(U) the set{v € V | v € N(u) for someu € U}. If no confusion can arise we will omit

the subscripG. We denote the closed neighborhdg(l/) U {v} by N[v]. A vertex setl is anindependent seif

G if any pari of vertices in is not an edge o6, and a vertex set is acliqueif every pair of vertices irC is an

edge ofG. An independent set imaximumf it has the largest size among all independent sets. An independent
set ismaximalif none of its proper supersets is an independent set. An independentrseirisuim maximaif it

is maximal and has the smallest size among all maximal independent sets. A maximum clique, a maximal clique
and a minimum maximal clique are defined analogously. An edge which joins two vertices of a cycle but is not

itself an edge of the cycle is@ordof the cycle. A graph ishordalif each cycle of length at least 4 has a chord.

To a chordal grapks = (V, E), we associate a trek, called aclique treeof G, satisfying the following two
properties. (A) The nodes df are the maximal cliques @. (B) For every vertex of G, the subgrapf, of T
induced by the maximal cliques containings a tree. (In the literature, the condition (A) is sometimes weakened
as each node is a vertex subsetof It is well known that a graph is chordal if and only if it has a clique tree,
and in such a case a clique tree can be constructed in linear time. Some details are explained in books [3, 19]. The
following property is important in the running time analysis of our algorithms.

Lemma 1 LetG = (V, E) be a chordal graph, and denotedgthe family of maximal cliques o&. Then, it holds
that Y xex IKI = O(IV| + [E).

3 Linear-Time Algorithm to Count the Independent Sets

In this section, we describe an algorithm for counting the number of independent sets in a chordal graph. The
basic idea of our algorithm is to divide the input graph into subgraphs induced by subtrees of the clique tree. Any
two of these subtrees share a vertex of a clique if they are disjoint in the clique tree. This property is very powerful
for counting the number of independent sets since any independent set can include at most one vertex of a clique.
We compute the number of independent sets including each vertex of the clique, or no vertex of the cliqgue by
using the recursions.

First, we introduce some notations and state some lemmas. Given a chordabgtahE), we construct a
clique treeT of G. We now pick up any node in the clique tréeregard the node as the rootdf and denote it
by K;. This is what we call aooted clique treeFor a maximal cliqu& in a chordal grapi® and a rooted clique
treeT of G, a maximal cliqueK’ in G is adescendantf K (with respect tdl') if K’ is a descendant df in T.
For convenience, we considEritself a descendant df as well, and when no confusion arises we omit saying
“with respect toT.” Let prr(K) be the parent oK in T. For convenience, we defimer(K;) by 0. We denote by
T(K) the subtree of rooted at the node corresponding to the maximal cligué.et G(K) denote the subgraph
of G induced by the vertices included in at least one nodi(lk). Observe tha®(K) is a chordal graph of which
T(K) is a clique tree.

For a graplG, let 7S(G) be the family of independent sets@ For a vertex, let 7S(G, v) be the family of
independent sets iB includingv, i.e., 7S(G,V) := {S | S € 7S(G),v € S}. For a vertex set), let 7S(G, U) be
the family of independent sets @including no vertex ofJ, i.e., 7S(G,U) := {S | S € 78(G),SN U = 0}.

Lemma 2 Let G be a chordal graph aridbe a rooted clique tree &. Choose a maximal cliqué of G, and let

Ky, ..., K. be the children oK in T. (If K is a leaf of the clique tree, we sét= 0.) Furthermore let € K and

S € V(G(K)). Then,S € 78(G(K), v) if and only if S is represented by the union pff andS,, ..., S, such that

S € IS(G(K;i), v) if vbelongs taK;, andS; € 7S(G(K;), K N K;) otherwise. Furthermore, such a representation is
unique.

Proof. Assume thatS € 7S(G(K),v). LetS; := S n G(K;) for everyi € {1,...,¢}. Then,S includes the
union of {v} andSs,...,S,. Let us show the converse inclusion. Choose an arbitrary vere)s. If x = v,
then x is certainly included in the union di/} andS;,...,S,. Otherwise, we have € V(G(K)) \ K. Since
V(G(K)) = KU Ule V(G(K))), the vertexx belongs tdS; for somei € {1,...,¢}. ThereforeS is included in the
union of{v} andS,,...,S,. Now, we need to show that for evene {1,..., ¢} the setS; satisfies the property
required in the lemma. Fixe {1,...,¢}. If v belongs toK;, thenS; belongs tar S(G(K;), v) sincev also belongs
to S. If v ¢ K, thenS; belongs ta7 S(G(K;), K N K;) sincev is adjacent to all vertices & N K;. Thus the required
property is satisfied. This completes the proof of the only-if part.

Next, we prove the if part. Assume thatis the union offv} andS,, ..., S, satisfying thatS; € 7S(G(K;), v)
if ve K, andS; € ﬁ(G(Ki), K n K;) otherwise. Whew € K;, sincev is adjacent to all vertices df \ {v}, every
vertex inS; \ {v} belongs toV(G(K;)) \ K. Whenv ¢ K;, by the definition otTS(G(Ki), K n K;), every vertex in
Si\{v} belongs td/(G(K;j)) \ K. Therefore, for eache {1,..., ¢} it holds thatS; \ {v} € V(G(K;)) \ K. This implies
thatS\ {v} € V(G(K)) \ K. Now, we show that for every j € {1,...,¢},i #], (Si \ {V}) U(S; \ {v}) is independent.
To show that, suppose not. SinBeandS; are independent, there must be an ejdgg} € E such thaix € S; \ {v}
andy € S; \ {v}. Since{x,y} is an edge 06, it is included in some maximal clique &. Then, the definition of
a clique tree implies that or y belongs toK. Without loss of generality, assume thabelongs tak. (Remember
thatx € S; \ {v}.) If S; € TS(G(K;), V), thenS; n K 2 {v, x}. This is a contradiction t&; being independent. If
Si € I8(G(Ki), K N K;), thenS; cannot contain any vertex ¢f, particularlyx. This is also a contradiction. Thus

the claim is verified, and it implies th&\ {v} is an independent set &f(K). Together with the observation that
no vertex ofG(K;) \ K is adjacent t if v ¢ K, this further implies tha$ is an independent set &(K). Since
v € S, this shows tha$ € 7S(G(K), V).

To show the uniqueness, suppose Bi& the union ofv}, Sy, ..., S, and also the union df/}, S7, ..., S} such
that there existswith S; # S;. Without loss of generality assume ti&t\ S{ # 0. Choose a verten € S; \ S,
whereu # v. Then, there must exigt# i with u € S!. Hence, there exists a notles T(K;) such thau € L and
anodel’ € T(K;) such thau € L. (Note thatL andL” are maximal cliques d&.) Then, by Property (B) in the
definition of a clique tree, the nodes on the path connedtiagdL’ in T containu. In particular we have € K.
Therefore,u andv belong to the cliqu& and at the same time they belong to the independers.séhis is a
contradiction. L]

By a close inspection of the proof above, we can observe that for évery{1,...,¢}, i # |, it holds that
V(G(Ki)) \ K is disjoint fromV(G(K;)) \ K. This property gives a nice decomposition of the problem into several
independent parts, and enables us to perform the dynamic programming on a clique tree.

By similar discussion as above, we obtain the following lemma.

Lemma 3 Let G be a chordal graph aridbe a rooted clique tree 8. Choose a maximal cliqué of G, and let
Ki,..., K. be the children oK in T. (If K is a leaf of the clique tree, we sét=0.)

1. We haveS € 7S(G(K),K) if and only if S is the union ofSy, ..., S, such thatS; € 7S(G(K;), K n K;).
Furthermore, such a representation is unique.

2. Foreach € {1,..., £}, we haveS; € 7S(G(K;), K n K;) if and only if S; belongs either td S(G(K;), V) for
somev € K; \ K or to Z7S(G(K;), K;). FurthermoreS; belongs to exactly one of them.

From these lemmas, we have the following recursive equationsSor

Equations 1 Let G be a chordal graph antd be a rooted clique tree &. For a maximal cliqué of G which is
not a leaf of the clique tree, I1&, . .., K, be the children oK in T. Furthermore, lev € K. Then, the following
identities hold. (We remind that means “disjoint union.”)

ISG(K) = TS(G(K).K)U UIS(G(K),V);
veK
¢ TS(G(Ki), V) fvekK .
ISEK)Y) = (SUMIS= g Si.Si € { TS(G(K), K N K;) otherwise} ’
4
IS(G(K),K) = {SI1S=| |Si,Sie TS(G(K). K nK)};

i=1

IS(G(K), KNK) = ISG(Ki),Ki)U U TS(G(K;),u) foreachie(1,...,¢).
ueK;j\K

These equations lead us to the algorithm in Figure 1 to count the number of independent sets in a chordal graph.
For a maximal cliqgu&K of a chordal grapis, we denote the set of children &fin a rooted clique tree d& by
cup(K).

Theorem 4 The algorithm#IindSets outputs the number of independent sets in a chordal g&aph (V, E) in
O(|V| + [E|) time.

Proof. From Equations 1, the algorithm correctly computes the number of independent 98ts inet
us consider the computation timgK) taken by a call to#IndSetsiter(K). The overall running time
of #IndSets is t(K;) + O(K;|). Steps 7 and 8 tak®(t(K’)) and O(|K’|) time for eachK’ e cup(K)
respectively. Step 9 can be done @(cup(K)[). Next, we analyze the computation time for Step

10. Since‘I_S(G(K), K)| = TMecrn |B(G(K’), KN K’)', we have thall Ty ccrpyvex: ZS(G(K'),)| X
o ’ N [T cCHD(K)vex’ HS(G(K)V)] - . -
[Tk ecup(K)vek” |IS(G(K), KNK)‘ = |IS(G(K), K)‘ X R— ﬁ(G(K,)’KmK/)‘, and we use this equation in
Step 10. ThenZ S(G(K), V)| can be computed i®({K” € cup(K) | v € K’}|) time, thus Step 10 can be done in
O(Zvek {K” € cup(K) | v € K’})) time. Therefore, the accumulated time taken by a caltitmiSetslter(K;) is
Ykrecup(k,) (O(t(K")) + O(K[)) + O(lcup(K)[) + O(Zek, I{K” € cup(K;) | v € K'}). By expanding(K’) inside the
sum, we can see that this is at mOgY. ki K|+ Xvek {K’ € cup(K) | v € K'})), whereK denotes the set of nodes

Algorithm 1: #IndSets

Input : A chordal graptG = (V, E);

Output: The number of independent setsGn
1 construct a rooted clique tr8eof G with rootK;;
2 call #IndSetslter(K;);

3 return [TS(G, Ko)| + Tuek, IZS(G(K), V).

Procedure #IndSetslter (K)

Input : A maximal cliqueK of the chordal grapks;
4 if Kis a leaf ofT then

5 ‘ set'ﬁ(G(K), K)‘ :=0and|Z7S(K,v)| := 1 for eachv € K;
6 else
7 foreach child K’ of K do call #IndSetslter(K’);

g | foreachchild K’ of K do compute|ﬁ(G(K'), KN K')j by \B(G(K'), K| + ek IZSGK), W)l ;
o | computdZS(G(K), K)| by Mvecnni) [TSGK). K 1 K)|;
10 foreachv € K do computelZS(G(K), V)| by [Tk-ccupwyves L S(G(K"), V) X TTkrccup)vex: IS(G(K"), KN K|

Figure 1: Algorithm to count the number of independent sets in a chordal graph.

in the clique tree, i.e., the family of maximal cliques®f By Lemma 1, we hav& .« |[K| = O(|V| + |E|). Fur-
thermore, it follows tha} kcx Yvek {K” € cap(K) | ve K’} = ey (K € K | v e K'Y = Ykex IK| = O(IV| + |E])
again by Lemma 1. Hence, the overall running time§s/| + |E|). L]

4 Linear-Time Algorithm to Count the Maximum Independent Sets

In this section, we modify Algorithm#indSets to count the number of maximum independent sets in a chordal
graph. For a set family§, we denote by max¥) the cardinality of a largest set #, and argmax§) denotes the
family of largest sets 5. For a graplG, let MZS(G) be the family of maximum independent set€dn For a
vertexv, let MZS(G, V) be the family of maximum independent setGrincludingv, i.e., MZS(G,V) = {S €
MIS(G) | veS). Foravertex set), let M7 S(G, U) be the family of maximum independent set&iincluding
no vertex ofU, i.e., MZIS(G,U) :={Se MIS(G) |SNnU = 0}.

From lemmas stated in the previous section and Equations 1, we immediately have the following equations.

Equations 2 With the same set-up as Equations 1, the following identities hold.

argmax(MZS(G(K), K) U U MIS(G(K),V));

veK

4
argmax(S | S = U S,,Si € {
i=1

MIS(G(K))

MIS(G(K), V)

MIS(G(K),V) if veK; _
MIS(G(Ki),KNK;) otherwise})

4
argmax(S | S = |_J S, S € MIS(G(K)), K N K))));

i=1

argmaxzS(G(K;), K;) U U MIS(G(K),).

uek;\K

MIS(G(K),K)

MIS(G(Ki), Kn Ki)

Since the sets of each family on the left hand side have the same size in each equation, the cardinality of the set can
be computed in the same order as AlgorithimdSets. For example M7 S(G(K)) can be computed as follows.

1. SetN := 0 andM := max(MIS(G(K), K) U Uyexk MIS(G(K), V));

2. if the size of a member oM 7 S(G(K), K) is equal toM, thenN := N + |MIS(G(K), K)‘;

3. for eachv € K, if the size of a member 0§17 S(G(K), v)) is equal toM, thenN := N + |MIS(G(K), V))|;
4. outputN.

In this way we have the following theorem.

Theorem 5 The number of maximum independent sets in a chordal g&aph(V, E) can be computed i®(|V| +
|E|) time.

5 Efficient Algorithm to Count the Independent Sets of Sizé

In this section, we modify Algorithn#indSets to count the number of independent sets of &izé&or a graph
G and a numbek, let 7S(G; k) be the family of independent sets@of sizek. For a vertexv, let 7S(G, v; k)
be the family of independent sets @ of sizek includingyv, i.e., IS8(G,v;k) := {S € IS8(G;k) | v € S}. For
a vertex setJ, let 7.8(G, U; k) be the family of independent sets @ of sizek including no vertex o, i.e.,
IS8(G,U;K) ={S € IS(G;k) | SNU = 0)}.

From lemmas stated in Section 3 and Equations 1, we immediately obtain the following equations.

Equations 3

TS(G(K).K: K U 78(G(K). v; Ky

veK

IS5(G(K); k)

14
sIs=|JsiIsI=kSi e
i=1

TS(G(K),v; k) { T8(G(Ki).V) if v e K, } ;

IS8(G(Ki),K NK;) otherwise

TS(G(K),K; K)

t
(S|S= U Si.I1S| = k, S € 7S(G(K;), K N Kp)};
i=1

TS(G(Ki), K N Ki; k)

TS(G(Ki), Ki; K) U U TS(G(K)), u; K).
ueKi\K

In contrast to Equations 1, the second and third equations of Equations 3 do not give a straightforward way to
computel 7S(G(K), v; K)| and‘fS(G(K), K; k)‘, respectively, since we have to count the number of combinations
of S1,..., S, which generate an independent set of &iz€o compute them, we use a more detailed algorithm.

Here we only explain a method to compufeS(G(K), v; k)| since ‘TS(G(K), K; k)l can be computed in a
similar way. Fix an arbitrary vertex € K. Then, according te, we give indices to the children &f such that
K, ..., Kp includev andKp,1, .. ., Ky do not. Fork’ < kand¢ < p, letNum(¢;K) :={S| S = Uf;l S,,S; €
IS8(Ki,v),IS| = K'}. Fork’ < kand¢’ > p+ 1, letNum(¢’;K) := {S|S = U, Si, Si € IS(Ki, Ki \ K),IS| = K'}.
Then, it holds thalZ S(G(K), v; k)| = Xf_o(INum(p; h) x [Num(p + 1;k - h))).

For eachy” andk’, [Num(¢’; K')| can be computed i@(k x p) time based on the following recursive equation:

_ { SK o INum(¢ = 1;h)| x |TS(G(Kp), v;K = h)| if ¢ > 1,

|NUM(€ ; k) = |IS(G(K1), v k/)l otherwise.

Similarly, [Num(¢’; k)| can be computed i@(K) time. The computation dNum(¢’; k)| and|Num(¢’; k)| for all
combinations of” andk’ can be done iO(k?lcup(K)|) time, thus we can count the number of independent sets
of sizek in a chordal graph ifO(k3V|?) time. In the following, we reduce the computation time by the same
technique used in the previous sections.

Observe tha1ﬁ(G(K), KiK)| = 2K o [Num(p; h)| x [Num(p + 1;k’ — h)|, which gives|Num(p + 1;K’)
[Num(p; 0)| = |TS(G(K), K;K)| = Z_; [Num(p; h)| x [Num(p + 1;k' — h)|. This implies that we can compute

[Num(k'; p+ 1)| from |E(G(K), K; h)| and|Num(p; h)| in the increasing order df. The computation time for
this task isO(k x p).
In summary, we can computé/S(G(K),v;k)| for all v. € K and K € {0,...,k} in
O(K? ek K € cap(K) | v € K’}|) time. Therefore, the total computation time over all iterations can be bounded
in the same way as the above section, and we obtain the following theorem.

X

Theorem 6 1. The number of independent sets of skze a chordal grapl& = (V, E) can be computed in
O(K3(IV| + |E))) time.
2. The numbers of independent sets of all sizes from [¥'tin a chordal grapit = (V, E) can be simultane-
ously computed itO(|V|?(JV| + |E])) time.

6 Enumeration

Equations 1 in Section 3 directly give the following algorithm for enumerating the independent sets of a given
chordal graph, in which each procedure corresponds to an equation of Equations 1.

Algorithm 3: EnumIS(G)
Input :achordal grapls = (V, E);
Output: all independent sets @;
1 construct a clique tre€ of G with rootK;
2 foreachu € K do enumerate all independent setdiS(G, u) by EnumIS2(K, u);

3 enumerate all independent set7i§(G, K) by EnumIS3(K).

Procedure EnumliS2 (K, u)
Input : A maximal cliqueK of G, a vertexu € K;
4 if K has no childthen
5 \ output {u}; //output an independent set if the bottom level is reached
6 else
7 foreachchild K; of K such thatu € K; do enumerate all independent setdi8(G(K;), u) by EnumIS2(K;, u);
8 foreach child K; of K such that ¢ K; do enumerate all independent set<iS(G(Ki), K N K;) by EnumIS4(K);
9 output all independent sets IAS(G(K), u) by combining the independent setsZi$(G(K;), u) and in

IS(G(K)), K nK;) for alli, j;

Procedure EnumIS3(K)
Input : A maximal cliqueK of G;
10 if K has no childthen
11 \ output 0; //output an independent set if the bottom level is reached
12 else
13 L foreach child K; of K do enumerate all independent seti§(G(K;), K N K;) by EnumIS4(K;);

14 | output all independent sets iRS(G(K), K) by combining the independent setsiis(G(K;), K N K;);

Procedure EnumliS4(K)
Input : A maximal cliqueK of G;
15 call EnumIS3(K);
16 foreachu e K\ prr(K) do enumerate all independent setdi8(G(K), u) by EnumIS2(G(K), u);

17 output all independent sets iRS(G(K), K n prr(K)) by combining the independent setsiis(G(K), u);

From the lemmas and theorems in the previous sectlemanIS(G) surely enumerates all independent sets
in G. However, we cannot bound its time complexity by constant for each output. In the following, we present a
slight modification to obtain a constant-time enumeration algorithm.

Let us consider the computation tree of this algorithmcomputation treés a rooted-tree representation of
a recursive structure, in which the vertices are recursive calls, and the edges connect two vertices if and only if
one vertex recursively calls the other. We defingtaration of the algorithm by the operations done in a vertex
of the computation tree. In other words, an iteration is the computation in some pro&echmersively called by
another procedure, in which the computation in the recursive calls generakeis lexcluded.

We first reduce the number of iterations by the following two modifications. (1) If an iterag@merated by
an iterationl, recursively calls just one iteratidg, then we modify the algorithm so thgs recursively calld .
directly. (2) If an iterationl outputs just one independent set, then mérgead the iteration which recursively
callsl into one.

For a given chordal grap6 = (V,E) and a rooted clique tree @&, the number of possible inputs for each
procedure is at mosD(|E|), as in our counting algorithms. Thus, we can enumerate all of these ca®¢&in
time, and keep the results of modifications (1) and (2) in the memory. It can be done as a preprocessing within
O(|E|) time.

By these modifications, we can see that any iteration which is a leaf of the computation tree outputs at least
two independent sets, thus the number of iterations is not greater than the number of independe@Gt S&ts in
can also see that if an iteration outputs just one independent set, then, the input cligue must be a leaf of the clique
tree. Hence, the size of the output independent set is at most one.

We next consider how to compute all combinations of independent sets in, for example, Step 9 of the algo-
rithm. In the procedures, the independent setKfare generated by combining the independent recursive calls
for several maximal cliques, sa§; and K. This step can be implemented as follows. First, we compute an
indenendent sd for Ky, and for thisl;, we compute all independent sétdor K,, and output; U I,. Next we
compute another independent sgfor Ky, and compute all independent séidor K», and output; U I, then
compute yet another independent setey and so on. Then the computation time in one iteration is proportional
to (the number of recursive calls generated) times (the maximum number of vertices added to the current inde-
pendent set). Because of modification (2), any iteration adds at most one vertex to the current independent set.
Therefore, the total time complexity of the algorithm is linear in the number of independent sets.

Theorem 7 All independent sets in a chordal graph can be enumerated in constant time for each on average with
additionalO(|V| + |E|) time for preprocessing.

Similar algorithms can be developed to enumerate the maximum independent sets and the independent sets
of sizek. However, some iterations may add to the current independent set several vertices not bounded by a
constant. Since there are at mfigtkinds of inputs for each procedure, we can enumerate all such sets of vertices
that will be added in an iteration, and put an identical name to each set of vertices in short time. By adding the
name instead of adding vertices in a vertex set, we can execute the addition in constant time. Thus, the maximum
independent sets and the independent sets oksiaa be enumerated in constant time for each on average with
additionalO((|V| + |E|)|V|?) time for preprocessing.

7 Hardness of Counting the Maximal Independent Sets

In this section, we show the hardness results for counting the number of maximal independent sets in a chordal
graph. Although finding a maximal independent set is easy even in a general graph, we show that the counting
version of the problem is actually hard.

Theorem 8 Counting the number of maximal independent sets in a chordal grajfhéemplete.

The proof is based on a reduction from the counting problem of the number of set coveXshé atfinite set,
andS c 2% be a family of subsets of. A set covernof X is a subfamily7 c S such that J ¥ = X. Counting the
number of set covers igP-complete [17].

Proof of Theorem 8. The membership i#P is immediate. To show th#P-hardness, we use a polynomial-time
reduction of the problem for counting the number of set covers to our problem.

Let X be a finite set an& c 2X be a family of subsets of, and consider them as an instance of the set cover
problem. Let us puS := {Sy,...,Si}. FromX andsS, we construct a chordal grafgh= (V, E) in the following
way.

We setV ;= XUSU S, whereS’ := {S],...,S{}. Namely,S’ is a copy ofS. Now, we draw edges. There
are three kinds of edges. (1) We connect every pair of vertic¥syp an edge. (2) For evely € S, we connect
x € X andS by an edge if and only ik € S. (3) For everyS € S, we connect andS’ (a copy ofS) by an edge.
Formally speaking, we defing := {{x,y} | X,y € X}U{{x,S} | xe X,S € S,xe S}U{{S,S'} | S € S}. This
completes our construction. Note that this construction can be done in polynomial time.

First, let us check that the constructed gr&pis indeed chordal. Le€ be a cycle of length at least four in
G. Since the degree of a vertex i is one, they do not take part in any cycle®f So forget them. Sinc8§ is
an independent set @&, vertices inS cannot appear along in a consecutive manner. Then, since the length of
C is at least four, there have to be at least two vertice$ which appear irC not consecutively. Then, these two
vertices give a chord sincgis a clique ofG. HenceG is chordal.

Now, we look at the relation between the set coverX a@ind the maximal independent sets®fLet U be a
maximal independent set &f. We distinguish two cases.

Case 1.Consider the case in whidh contains a vertex € X. SinceX is a clique ofG, U cannot contain any
other vertices oK. LetGy := G\ Ng[X]. (Remember thalNs[X] is the closed neighborhood &f i.e., the set of
vertices adjacent ta in G and x itself.) By the construction, we have th#{G,) = (S € S| x ¢ S}uU S’ and
E(Gx) = {{S,S'} | S € S,x ¢ S}. Then, avertexs’ € &’ such thatx € S is an isolated vertex db,. Therefore,
this vertex must belong t0 by the maximality ofU. For eachs € S such thatx ¢ S, U must contain eithe® or
S’, but not both. This means that the number of maximal independent sets conteisiepctly #S<SX#S,

Case 2.Consider the case in whidb contains no vertex oX. Then, for eacts € S, due to the maximality)
must contain eithe® or S’. FurthermorelJ NS has to be a set cover &f(otherwise an element &f not covered

by U N S could be included iJ). Hence, the number of maximal independent sets containing no ver¥isof
equal to the number of set coversXf

To summarize, we obtained that the number of maximal independent $8ts@&qual to the number of set
covers ofX plus 3 ,.x 215eS¥S)l - Since the last sum can be computed in polynomial time, this concludes the
reduction. L]

As a variation, let us consider the problem for counting the minimum maximal independent sets in a chordal
graph. Note that a minimum maximal independent set in a chordal graph can be found in polynomial time [8]. In
contrast to that, the counting version is hard.

Theorem 9 Counting the minimum maximal independent sets in a chordal grafrtomplete.

Proof. We use the same reduction as in the proof of Theorem 8. Look at the case distinction in that proof again.
The maximal independent sets arising from Case 1 hSive 1 elements, while the maximal independent sets
from Case 2 haviS| elements. Therefore, the minimum maximal independent sets of the Graphstructed in

that proof are exactly the maximal independent sets arising from Case 2, which precisely correspond to the set
covers ofX.]

8 Hardness of Finding a Minimum Weighted Maximal Independent Set

In this section, we consider an optimization problem to find a minimum weighted maximal independent set in a
chordal graph. Namely, given a chordal grapland a weight for each vertex, we are asked to find a maximal
independent set d& with minimum weight. Here, the weight of a vertex subset is the sum of the weights of its
vertices.

Notice that there is a linear-time algorithm for this problem when the weight of each vertex is zero or one [8].
On the contrary, we show that the problem is actually hard when the weight is arbitrary.

Theorem 10 Finding a minimum weighted maximal independent set in a chordal grayh-tsard.

The proof is similar to what we saw in the previous section. We use the optimization version of the set cover
problem, namely the minimum set cover problem. It is known that the minimum set cover probNEvhisrd.

Proof of Theorem 10. For a given instance of the minimum set cover problem, we use the same construction of a
graphG as in the proof of Theorem 8. We define a weight functioams follows:w(x) := 2|S| + 1 for everyx € X;
wW(S) := 2 for everyS € S; w(S’) := 1 for everyS’ € §’. This completes the construction.

Now, observe thalS is a maximal independent set of the constructed g@pand the weight ofS is 2S|.
Therefore, no element of takes part in any minimum weighted maximal independent sét ofhen, from the
discussion in the proof of Theorem 8 Nf is a maximal independent set@fsatisfyingM N X = 0, thenM N S is
a set cover oK. The weight ofM is [M N S| + |S|. Therefore, ifM is a minimum weighted independent seGf
thenM minimizes|M N S|, which is the size of a set cover. Hend&N S is a minimum set cover. This concludes
the reduction. L]

We can further show the hardness to get an approximation algorithm running in polynomial time. The precise
statement is as follows.

Theorem 11 There is no randomized polynomial-time algorithm for the minimum weight maximal indepen-
dent set problem in a chordal graph with approximation ratioV|, for some fixed constart, unlessNP C
ZTIME(nC(loglogn))

Remark thaZTIME(t) is the class of languages which have a randomized algorithm running in expected time
t with zero error.

Acknowledgement The authors are grateful to L. Shankar Ram for pointing out a paper [5].

References

[1] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the Desirability of Acyclic Database Schionesal
of the ACM 30:479-513, 1983.

[2] J.R.S. Blair and B. Peyton. An Introduction to Chordal Graphs and Clique TreeSrajph Theory and
Sparse Matrix Computatigrvolume 56 ofIMA, pages 1-29. (Ed. A. George and J.R. Gilbert and J.W.H.
Liu), Springer, 1993.

[3] A.Brandshadt, V.B. Le, and J.P. Spinraraph Classes: A SurveplAM, 1999.

[4] P. Buneman. A Characterization of Rigid Circuit GrapbBsscrete Mathematic9:205-212, 1974.

[5] L.S. Chandran. A Linear Time Algorithm for Enumerating All the Minimum and Minimal Separators of a
Chordal GraphCOCOON 2001pages 308-317. LNCS Vol. 2108, Springer-Verlag, 2001.

[6] L.S. Chandran, L. Ibarra, F. Ruskey, and J. Sawada. Generating and Characterizing the Perfect Elimination
Orderings of a Chordal Grapfheoretical Computer Sciencg7:303—-317, 2003.

[7] D. Eppstein. All Maximal Independent Sets and Dynamic Dominance for Sparse Grajptiscli6th Ann.
ACM-SIAM Symp. on Discrete Algorithn®CM, 2005.

[8] M. Farber. Independent Domination in Chordal Grapbperations Research Letters(4):134-138, 1982.

[9] J. Flum and M. Grohe. The Parameterized Complexity of Counting ProblgiAdl J. Comput.33(4):892—

922, 2004.

[10] P. Frankl and R.M. Wilson. Intersection theorems with geometric consequé&mahinatorica1:357-368,
1981.

[11] D.R. Fulkerson and O.A. Gross. Incidence Matrices and Interval Grapasific J. Math, 15:835-855,
1965.

[12] F. Gavril. Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by Cliques, and Max-
imum Independent Set of a Chordal GraghAM J. Comput.1(2):180-187, 1972.

[13] M.C. Golumbic. Algorithmic Graph Theory and Perfect GraphsAnnals of Discrete Mathematics 57.
Elsevier, 2nd edition, 2004.

[14] P.N. Klein. Hiicient Parallel Algorithms for Chordal GraphSIAM J. Comput.25(4):797-827, 1996.

[15] V.S. Anil Kumar, Sunil Arya, and H. Ramesh. Hardness of Set Cover with Intersectié@ALP 200Q
pages 624—635. LNCS Vol. 1853, Springer-Verlag, 2000.

[16] J.Y.-T. Leung. Fast Algorithms for Generating All Maximal Independent Sets of Interval, Circular-Arc and
Chordal GraphsJournal of Algorithms5:22—-35, 1984.

[17] J.S. Provan and M.O. Ball. The Complexity of Counting Cuts and of Computing the Probability that a Graph
is ConnectedSIAM J. Comput.12:777—-788, 1983.

[18] D.J. Rose, R.E. Tarjan, and G.S. Lueker. Algorithmic Aspects of Vertex Elimination on Grgpas] J.
Comput, 5(2):266-283, 1976.

[19] J.P. SpinradEfficient Graph Representationdmerican Mathematical Society, 2003.

[20] R.E. Tarjan and M. Yannakakis. Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclic-
ity of Hypergraphs, and Selectively Reduce Acyclic HypergragaM J. Comput.13(3):566-579, 1984.

[21] S.P. Vadhan. The Complexity of Counting in Sparse, Regular, and Planar Gr&As1 J. Comput.
31(2):398-427, 2001.

10

A Omitted Proofs

Proof of Lemma 1. To prove Lemma 1, we use more notions. Given a gr@ph (V,E), a vertexv € V is
simplicial in G if Ng(v) is a clique inG. An orderingvs,...,V, of the vertices oV is a perfect elimination
orderingof G if v; is simplicial in the subgraph induced ¥, vi,1,..., vy} foralli = 1,...,n. It is known that a
graph is chordal if and only if it has a perfect elimination ordering [3, Section 1.2].

Take any perfect elimination ordering, Vo, . . ., v, of G. LetC(v;) := Ng[Vi]N{Vi, Viz1, ..., Vn}. Itis known that
for every maximal cliqu&K of G there exists a vertex € V such thaK = C(v;) holds [11]. SinceC(v;) € Ng[vi],
we have|C(v)| < INg[vi]l = 1+ deg;(vi). Putting together, we obtaiflxcx K| < Yvev ICV)| < Dvev(d +
degs(v)) = V| + 2|E| = O(V| + [EJ). "

Proof of Lemma 3. 1. Similar to Lemma 2. We omit.

2. First, assume th&; € 7S(G(K;), V) for somev € K; \ K. Sincek; is a clique,S; cannot include any vertex of

Ki \ {v}, particularly ofK N K;. ThereforeS; € 7S(G(K;), K N K;). Secondly, assume that € 7S(G(K;), K;).

Then,S; includes no vertex oK; N K, sinceK; N K € K;. HenceS; € E(G(Ki), K N Kj). This proves the if part.
Let us prove the only-if part and the uniqueness. AssumeShhelongs toﬁ(G(Ki), Ki N K). WhenS;

includes a vertex of K; \ K, we haveS; € 7S(G(K;), v). Note thatv is a unique element i§; N (K; \ K) sinceS;

is an independent set aigl\ K is a clique. Therefores; ¢ 7S(G(K;), u) for u € (K; \ K) \ {v}. WhenS; includes

no vertex ofK; \ K, it follows thatS; € 7S(G(K;), K;).]

Proof of Theorem 11. We use the following variant of the minimum set cover problem in which the intersection
of every two sets has at most one element. We call the problemitlimum set cover problem with intersection
1

Anil Kumar, Arya & Ramesh [15] showed that the minimum set cover problem with intersection 1 cannot be
approximated by any randomized polynomial-time algorithm with approximationadti¢X|, for some constant
¢, unlessNP C ZTIME(n®(eglogm) We use this fact in our proof.

Before proving the theorem, we need a lemma which bounds the s@énadin instance of the minimum set
cover problem with intersection 1. This is an easy special case of a theorem by Frankl & Wilson [10], which is
well known in extremal combinatorics. Hence we are not going to prove it.

Lemma 12 Let X be a finite set an® c 2% be a family of subsets of such thatAn B| < 1 for everyA,Be S
and0 ¢ S. Then,|S| < (*31).

Now we are ready to prove Theorem 11.

Suppose that there exists a randomized polynomial-time algoAtiwith approximation ratiacIn [V| for the
minimum weighted maximal independent set problem in a chordal graph. (The cansthbe determined later.)
We use the algorithm to get a polynomial-time algorithm with approximation ratidn |X| for the minimum set
cover problem with intersection 1. Then, this will imply thé@ < ZTIME(n°(09'ogm),

Let X be a finite set and ¢ 2X be a nonempty family of subsets ¥fsuch thatAn B| < 1 for everyA,Be S
and® ¢ S. (We can assum@ ¢ S without loss of generality for an instance of the minimum set cover problem
with intersection 1 because the empty set covers no element.) From them, we construct@ gxaptly in the
same way as in the proof of Theorem 8. Setting= [cIn(|X|(|X| + 2))1|S|, we define a weightv as follows:
W(X) := 2a? + 1 for everyx € X; w(S) := 2a for everyS € S; w(S’) := 1 for everyS’ € &’. This is our
construction. (Note that this construction can be done in polynomial time.)

Denote by OPT an arbitrary (fixed) minimum weighted maximal independent &tgfAPX an output of the
algorithmA for G, and byw(OPT) andv(APX) the weights of them. Since the number of verticeSiis | X|+2|S],
which is at mostX| + 2(*}1) = |X|(1X| + 2) by Lemma 12, it follows that(APX) < cIn(X|(IX| + 2)w(OPT).

As in the proof of Theorem 1Q§ is a maximal independent set @fand its weight is 2|S|. Therefore, it
holds thatv(OPT) < 2a|S].

Now, suppose that there exists an elemeatX which is contained in APX. Themy(APX) > w(X) = 222 + 1.
This implies that 22 < W(APX) < cIn(X|(|X] + 2))W(OPT) < TcIn(X|(IX| + 2))] x 2a|S| = 222. This is a
contradiction. Thus, no elemerte X belongs to APX. This means that ARXS is a set cover oX. Let
C := APX n S and we show thaf approximates the optimal value for the minimum set cover problem within a
factor ofc’ In|X].

Again, by the same argument as in the proof of Theorem 10, we/@dX) = (2a — 1)|C| + |S|. LetC* be
a minimum set cover oK. Then, similarly we get(OPT) = (2 — 1)|C*| + |S]. Sincew(APX) < cIn(|X|(|X| +
2))\w(OPT), it follows that (2 — 1)|C| +|S] < cIn(IX|(|1X] + 2))((2x — 1)|C*| +1S]) = cIn(X|(IX| + 2))(2x — 1)|C*| + .

11

Hence, we obtaifC| < cIn(X|(X| + 2))C*| + ‘2’;—'_31' < cIn(X|(IX] + 2)C*| + ;:-%1 = cIn(IX|(IX| + 2))IC*| + 3 <

cIn(XI(X| + 2))C*| + 3 IN(XIXI +2))IC*] = (¢ + 3) IN(XI(XI +2))C*] < (c+ 3) IN(XP)IC*| = ((Bc+ 3) InX])IC”!.
Settingc = % - % gives an approximation ratio af In |X]. L]

12

