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Abstract

Origami is the centuries-old art of folding paper, and recently, it is investigated as computer science: Given
an origami with creases, the problem to determine if it can be flat after folding all creases is NP-hard. Another
hundreds-old art of folding paper is a pop-up book. A model for the pop-up book design problem is given, and
its computational complexity is investigated. We show that both of the opening book problem and the closing
book problem are NP-hard.
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1 Introduction
Origami is the centuries-old art of folding paper. Recently, some mathematicians and computer scientists have
started to study origami. For example, a geometric approach to origami design has taken, and one of useful
techniques is known as TreeMaker program by Lang [8]. On the other hand, “global flat foldability” of an origami
is considered. The problem to find appropriate overlap order to fold a given origami flat is NP-hard [1]. The paper
folding problem can be generalized. For example, folding a map seems to be similar to the problem of origami.
The reader can find a comprehensive survey of the complexity of folding an origami and related results due to
Demaine & Demaine [3] and Demaine & O’Rourke [4].

Another hundreds-old art of folding paper is a pop-up book. Contemporary pop-up book artists invent many
sculpture of great beauty and intricacy (see, e.g., [9]). A pop-up book has two major differences comparing to
origami. First, it has two surface covers with a hinge, and the essential movement depends on them. Hence the
movement is strongly restricted (see, e.g., [7, 2] for possible movements). Second, a book is not only closed (or
folded) but also opened (or unfolded). For a pop-up book designer, the problem is to design sculptures by a paper
between two covers, and make the book be able to be opened and closed. Moreover, to see a page of the book, we
usually open or close the page once. That is, we do not repeat the movements open and close to see a page in the
book. From the viewpoint of the “computation” of the movement, this point also strongly restricts ourselves.

In this paper, we first give a model for the pop-up book design problem. Next, we show that both of the
opening book problem and the closing book problem are NP-hard. We note that our results do not use the overlap
order technique used in [1] to show the NP-hardness of the foldability problem of an origami.

2 Definitions
An input of the problems is a paper sculpture between a book structure. That is, a book consists of two (surface)
covers which are joined by a hinge, and some paper objects are fixed between the covers. A paper object between
the covers has some faces and creases. In our model, creases are given as a part of input, and we are not allowed
to make a new crease. A crease can be folded in both ways, and it is allowed to not be folded (unless making a
new crease). Given input is the (possible) design of a pop-up book. That consists of two surface covers with a
fixed degree, say θ0, and our objective is “opening” or “closing” the book. More precisely, for given degree θ1, we
aim to make the degree of the book from θ0 to θ1 without making a new crease. Now, we denote by POP(θ0, θ1)
the problem to decide if a given pop-up book with two covers of degree θ0 can be opened or closed to degree θ1
without making a new crease. The size of an input (or a pop-up book) is defined by the summation of the number
of lines (or edges of papers), the number of (predefined) creases, and the number of corners. In this paper, all
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borders (and creases) of a paper consist of straight lines. That is, we do not deal with the case that the border of a
paper makes a curve.

3 Closing a pop-up book
In this section, we show NP-hardness of the closing a pop-up book. More precisely, main theorem in this section
is the following:

Theorem 1 The problem POP(θ0, θ1) is NP-hard for any θ0 > θ1 ≥ 0.

We reduce from a well known NP-complete problem, NAE3SAT defined as follows [5, LO3].

Input: A formula F consists of m clauses c1, c2, . . . , cm of 3 literals with n variables x1, x2, . . . , xn.

Output: “Yes” if there is a truth assignment such that each clause has at least one true literal and at least one false
literal.

To reduce the problem, we make three kinds of gadgets called REVSTOP, CLAUSEc, and VARIABLEc by paper.
The REVSTOP is described in Figure 1; for the face A, the face B can be flipped from degree 0 to degree 180
centered at the line pivot. The CLAUSEc is described in Figure 2. A CLAUSEc consists of three parts (Figure 2(1)).
On the papers A and B, the right upper parts form REVSTOP. To see easily, they are omitted in Figure 2(2) and
(3). Figure 2 (3) is the final form of the CLAUSEc (with REVSTOP). The VARIABLEc is described in Figure 3;
two bottom lines will be glued to two surface covers, respectively. The neutral position is depicted in Figure 3(0).
Since the bottom lines have the same height, we have four possible cases to fold the VARIABLEc flat shown in
Figure 3(1)-(4). Among them, the cases (3) and (4) will be inhibited by other gadgets. Hence we will represent
the true and false assignments by the forms (1) and (2), respectively. We call two lines labeled by “a” and “c” in
the gadget ridges. When two foldings (1) and (2) are exchanged, the heights of two ridges (ex)change 2w.

Now, we construct a paper sculpture, or a design of a pop-up book, from a formula F (Figure 4). For each
i = 1, 2, . . . , n, the VARIABLEc Xi for xi are glued to two covers at the bottom lines. Initially, each VARIABLEc is
in a neutral position; two ridges are at the same height. For a clause c j = (`i1 , `i2 , `i3 ) with `i = xi or `i = x̄i, the
CLAUSEc C j is connected to VARIABLEc Xi1 , Xi2 , and Xi3 as follows: If `i1 = xi1 , the bottom line of A in Figure 2
is connected to the right ridge of the VARIABLEc Xi1 . If `i2 = x̄i2 , the bottom line of C in Figure 2 is connected to
the left ridge of the VARIABLEc Xi2 . The bottom line of B in Figure 2 is connected to the ridge of the VARIABLEc

Xi3 similarly. The connections are done in a natural way; see Figure 4 for the clause c j = (x1, x2, x̄n). In Figure 4,
the ridges imply x1 is true, x2 is false, and xn is true. We note that each VARIABLEc is in a neutral position, and all
ridges have the same height. Thus, each CLAUSEc is also in a neutral position as Figure 2(3). We do not glue the
gadgets to the covers except the bottom lines of VARIABLEcs. After connecting CLAUSEcs and VARIABLEcs, each
VARIABLEc cannot be folded in the form in Figure 3(3) and (4) without making a new crease. The reduction can
be done in a polynomial time of the size of F.

Now we are ready to show the key lemma:
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Lemma 2 The pop-up book constructed above can be closed completely if and only if there is a truth assignment
of F such that each clause has at least one true literal and at least one false literal.

Proof. Each ridge of a VARIABLEc can be high when it is on the top of the mountain, and low when it is on the
bottom of the valley. To fold each VARIABLEc flat, one of two ridges is high and the other ridge is low. Hence the
parts A, C, B of a CLAUSEc can take only two states, say, high and low.

We first show feasible cases for a CLAUSEc. When B and C correspond to the same height, and A corresponds
to the different height, C is let come near to B, and then A can be moved up or down 2w height to fold them flat
(Figure 5(1)). On the other hand, when A and B correspond to the same height and C takes the different height,
A and B are let go farther to both sides, and then C can be moved up or down 2w height to fold them flat (Figure
5(2)). Using the symmetric way, a CLAUSEc can be fold flat when one of A, B, and C is high and one of them is
low.

The other ways to fold them flat can be classified in two cases. The first case is three different heights; from the
form in Figure 5(2), we can fold A, C, and B flat with three different heights in this order or vice versa. However,
this case is impossible since three parts can take either high or low from the restriction by the VARIABLEcs. The
last case is the case that A, B, and C have the same height. This folding can be done if A and B are folded
symmetrically as shown in Figure 5(3) where the face A, which forms a symmetric shape of B, is omitted to see
the case easier. However, this case is also impossible. In the case, two symmetric faces, marked by R in Figure
5(3), of A and B have to make 360 degree. However, the “reverse” movement is inhibited by the REVSTOP in
Figure 2(1).

Therefore, the CLAUSEc C j can be folded flat if and only if one variable takes the different value from the other
two variables. Hence the pop-up book can be closed if and only if F is a yes instance of NAE3SAT.

Now we prove the main theorem in this section. In Lemma 2, making the gadgets small enough, we can prove
the theorem if θ0 is small enough and θ1 = 0. When θ1 > 0 and θ0 is close enough to θ1, we make the gadgets
between two inner covers, and put some stable stands between the inner covers and surface covers. On the other
hand, when θ1 is large, we join the inner covers and surface covers by a long paper ribbon with one crease. It is
easy to adjust the length of them to fit for given θ1 and θ0. This completes the proof of Theorem 1.

4 Opening a pop-up book
In this section, we show NP-hardness of the opening a pop-up book. More precisely, main theorem in this section
is the following:

Theorem 3 The problem POP(θ0, θ1) is NP-hard for any θ1 > θ0 ≥ 0.

We reduce from the 3SAT, well known NP-complete problem [5]. Let F be an instance of 3SAT, which
consists of m clauses c1, c2, . . . , cm of 3 literals with n variables x1, x2, . . . , xn. To reduce F, we make two kinds of
gadgets called VARIABLEo and CLAUSEo by paper.

The VARIABLEo is described in Figure 6; that consists of three thick rectangles and six thin rectangles. Two
edges of the same label are glued as in Figure 6. We note that the resultant gadget is completely flat. Let h be
the common height of the rectangles. Next, two handles are glued to the VARIABLEo at height h/2 as in Figure
7(1). (Two handles can be fold flat at the center creases.) Then, there are only two ways to make two handles
2h apart shown in Figure 7(2) and (3). (It has the same structure to an old Asian wooden toy which consists of
several boards banded like Figure 6, and they can be continuously flipped by twisting a handle.) We call the case
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(2) “True” and (2) “False.” Now, we attach two kinds of arms in Figure 8 to the VARIABLEo. (The number of arms
will be described later.) The labeled edges are glued to the corresponding edges in Figure 6. (Precisely, the left
arm is between A and F at a3, and the right arm is between B and I at b3.) The joints for adjustment are folded flat
as in Figure 8.

Now, from the completely closed VARIABLEo, when we make two handles 2h apart as in Figure 7(2), the left
arm can go down at most h/2 since it is free except at the edge a3, but the right arm has to go up h/2 since it is
caught by B and C, and pulled up. Hence, the bottom line of the left arm can go down h with unfolding the joint,
and the bottom line of the right arm cannot go down from the initial position. We note that, in the case, the left
arm can choose to stay at the initial position with using the joint. Similarly, when we make two handles 2h apart
as in Figure 7(3), the right arm can go down h, and the left arm cannot go down at all.

The CLAUSEo is described in Figure 9. A CLAUSEo consists of three ribbons P, Q, and R. The ribbon R has
length 6h, and both sides are glued to the covers at distance d from the hinge. The ribbon P joins the hinge and
one of the valley on R, and the ribbon Q joins the hinge and another valley on R.

Now, we construct a paper sculpture, or a design of a pop-up book, from a formula F. For each i = 1, 2, . . . , n,
the VARIABLEo Xi for xi are glued to two covers by two handles at distance 2d from the hinge. For a clause
c j = (`i1 , `i2 , `i3 ) with `i = xi or `i = x̄i, the CLAUSEo C j is connected to VARIABLEo Xi1 , Xi2 , and Xi3 as follows:
If `i1 = xi1 , one of three mountains on the ribbon R of C j is connected to the bottom line of the left arm of Xi1 .
If `i2 = x̄i2 , another mountain on R is connected to the bottom line of the right arm of Xi2 . The last mountain of
R is connected to Xi3 similarly. Hence, Xi has li left arms and ri right arms, where li and ri are the number of
occurrences of xi and x̄i in F, respectively. We note that, with suitable choice of h and d, all gadgets can be folded
flat, and the resultant pop-up book can be closed completely. The reduction can be done in a polynomial time of
the size of F.

Now we are ready to show the key lemma:

Lemma 4 The pop-up book constructed above can be opened if and only if there is a truth assignment of F such
that each clause has at least one true literal.
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Proof. We try to open the book with the assignment for each VARIABLEo. For each clause c j, if at least one of
three literals is true, the corresponding arm comes down to C j, and hence it can be opened to θ with d sin θ = h.
However, if none of them are true, no arms come close to C j, and hence it cannot be opened. Hence F is satisfiable
if and only if the pop-up book can be opened to θ.

Now we prove the main theorem. In Lemma 4, letting d � h, we have the theorem for POP(0, θ1) for small
θ1 > 0. We use the same trick in Section 3 for the other cases. This completes the proof of Theorem 3.

5 Concluding remarks
For the problems for an origami and a pop-up book, we did not show that they are in NP. In fact, the problems
might be PSPACE-hard in some model; they seem to be similar to the movement problems for 2-dimensional
linkages, which is PSPACE-hard due to Hopcroft, Joseph, and Whitesides [6].
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