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Abstract

Ptolemaic graphs are graphs that satisfy ptolemaic inequality for any four vertices. The graph class coincides
with the intersection of chordal graphs and distance hereditary graphs. The graph class can also be seen as
a natural generalization of block graphs (and hence trees). In this paper, a new characterization of ptolemaic
graphs is presented. It is a canonical tree representation based on a laminar structure of cliques. The tree
representation is constructed in linear time from a perfect elimination ordering obtained by the lexicographic
breadth first search. Hence recognition and graph isomorphism for ptolemaic graphs can be solved in linear
time. The tree representation also gives a simple intersection model for ptolemaic graphs. The results are also
extended to distance hereditary graphs.

Keywords: algorithmic graph theory, data structure, distance hereditary graphs, intersection model, ptolemaic
graphs.

1 Introduction

Recently, many graph classes have been proposed and studied [3, 13]. Among them, the class of chordal graphs
is classic and widely investigated. One of the reasons is that the class has a natural intersection model and
hence a concise tree representation; a graph is chordal if and only if it is the intersection graph of subtrees of
a tree. The tree representation can be constructed in linear time, and the tree is called a clique tree since each
node of the tree corresponds to a maximal clique of the chordal graph (see [23]). Another reason is that the
class is characterized by a vertex ordering, which is called a perfect elimination ordering. The ordering can also
be computed in linear time, and typical way to find it is called the lexicographic breadth first search (LBFS)
introduced by Rose, Tarjan, and Lueker [22]. The LBFS is also widely investigated as a tool for recognizing
several graph classes (see a comprehensive survey by Corneil [8]). Using those characterization$icieaty e
algorithms have been found for chordal graphs; to list a few of them, the maximum weighted clique problem,
the maximum weighted independent set problem, the minimum coloring problem [12], the minimum maximal
independent set problem [11], and so on. There are also parallel algorithms to solve some of these problems
efficiently [18].

Distance in graphs is one of the most important topics in algorithmic graph theory. The class of distance
hereditary graphs was introduced by Howorka to deal with the distance property called isometric [15]. Some
characterizations of distance hereditary graphs are given by Bandelt and Mulder [1], D’Atri and Moscarini [10],
and Hammer and M#ay [14]. Especially, Bandelt and Mulder showed that any distance hereditary graph can be
obtained fromK, by a sequence of extensions called “adding a pendant vertex” and “splitting a vertex.” Using
the characterizations, manffieient algorithms have been found for distance hereditary graphs [6, 2, 5, 21, 17, 7].
However, the recognition of distance hereditary graphs in linear time is not so simple; Hammer firad/’Ma
algorithm [14] fails in some cases, and Damiand, Habib, and Paul’s algorithm [9] requires to build a cotree in
linear time (see [9, Chapter 4] for further details). The cotree can be constructed in linear time by using recent
algorithm based on multisweep LBFS approach by Bretscher, Corneil, Habib, and Paul [4].

In this paper, we first focus on the class of ptolemaic graphs. Ptolemaic graphs are graphs that satisfy the
ptolemaic inequalityl(x, y)d(z w) < d(x, 2)d(y, w) + d(x, w)d(y, 2) for any four verticex, y, z,w. Howorka showed
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that the class of ptolemaic graphs coincides with the intersection of the class of chordal graphs and the class
of distance hereditary graphs [16]. Hence the results for chordal graphs and distance hereditary graphs can be
applied to ptolemaic graphs. On the other hand, the class of ptolemaic graphs is a natural generalization of
block graphs, and hence trees (see [25] for the relationships between related graph classes). However, there
are relatively few known results specified to ptolemaic graphs. The reason seems that the class of ptolemaic
graphs has no useful characterizations from the viewpoint of the algorithmic graph theory. We propose a tree
representation of ptolemaic graphs, which is based on the laminar structure of cliques of a ptolemaic graph. The
tree representation also gives a natural intersection model for ptolemaic graphs, which is defined over directed
trees. The tree representation can be constructed in linear time for a ptolemaic graph. The construction algorithm
can also be modified to a recognition algorithm which runs in linear time. In the construction and the recognition,
the ordering of the vertices produced by the LBFS plays an important role. Therefore, our result adds the class
of ptolemaic graphs to the list of graph classes that can be recogrirgdraly using the LBFS. Moreover, the

tree representation is canonical up to isomorphism. Hence, using the tree representation, we can solve the graph
isomorphism problem for ptolemaic graphs in linear time. (We note that a clique tree of a chordal graph is not
canonical and the graph isomorphism problem for chordal graphs is graph isomorphism complete.)

Next, we extend the results for the class of ptolemaic graphs to the class of distance hereditary graphs. We
show new characterizations of the class of distance hereditary graphs. The tree representation of the ptolemaic
graphs can be extended to the distance hereditary graphs, and that gives a geometric model for distance hereditary
graphs. As far as the authors know, there were no known geometric model for distance hereditary graphs.

2 Preliminaries

The neighborhoodbf a vertexv in a graphG = (V, E) is the setNg(v) = {u € V | {u,v} € E}, and thedegree
of a vertexv is [Ng(v)| and is denoted by degv). For a subsetl of V, we denote byNg(U) the set{v e V |
v € N(u) for someu € U}. If no confusion can arise we will omit the ind€& Given a graptG = (V,E) and
a subsetJ of V, the induced subgraph Wy, denoted byG[U], is the graph ¢, E’), whereE’ = {{u,v} | u,v €
U and{u, v} € E}. Given a graplG = (V, E), its complemenis defined byE = {{u, v} | {u,v} ¢ E}, and is denoted
by G = (V, E). A vertex set is anindependent set G[1] contains no edges, and then the gr&jh] is said to be
aclique Two verticesu andv are said to be &win if N(u) \ {v} = N(V) \ {u}. For a twinu andv, we say thatiis a
strong siblingof vif {u,v} € E, and aweak siblingf {u,v} ¢ E.

Given a graplG = (V, E), a sequence of the distinct vertiogsvs, ... ., Vv is apath, denoted byvy, vo, ..., V),
if {vj,vj+1} € E for each 1< j < I. Thelengthof a path is the number of edges on the path. For two verticesl
v, thedistanceof the vertices, denoted li{u, v), is the minimum length of the paths joiningandv. A cycleis a
path beginning and ending with the same vertex.

An edge which joins two vertices of a cycle but is not itself an edge of the cycleli®m@ of that cycle. A
graph ischordalif each cycle of length at least 4 has a chord. Given a g&ph(V, E), a vertexv € V is simplicial
in G if G[N(v)] is a clique inG. An orderingvy, ..., Vv, of the vertices oV is aperfect elimination orderingPEQO)
of G if the vertexy; is simplicial inG[{vi, Vi;1,...,Vp}] forall i = 1,...,n. Once a vertex ordering is fixed, we
denoteN(vj) N {Vi1,. .., Va} by Nsi(vj). We also use the notions “min” and “max” to denote the first and the last
vertices in an ordered set of vertices, respectively. It is known that a graph is chordal if and only if it has a PEO
(see [3, Section 1.2] for further details). A typical way of finding a perfect elimination ordering of a chordal graph
in linear time is the lexicographic breadth first search (LBFS), which is introduced by Rose, Tarjan, and Lueker
[22], and a comprehensive survey is presented by Corneil [8].

It is also known that a grap@ = (V, E) is chordal if and only if it is the intersection graph of subtrees of a
treeT (see [3, Section 1.2] for further details). LBt denote the subtree af corresponding to the vertexin G.
Then we can assume that each nodle T corresponds to a maximal clig@of G such thatC containsv onG if
and only if Ty containscon T. Such a treq is called aclique treeof G. From a perfect elimination ordering of a
chordal graplG, we can construct a clique tree @fin linear time [23]. We sometimes unify a nodef a clique
treeT with a maximal clique (or a vertex sef)of G.

Given a graphG = (V,E) and a subset) of V, an induced connected subgraBpU] is isometricif the
distances ifG[U] are the same as i@. A graphG is distance hereditaryf G is connected and every induced path
in G is isometric. We will use the following characterization of distance hereditary graphs stated by Bandelt and
Mulder [1]:

Theorem 1 A graph G with at least two vertices is distance hereditary if and only if G can be obtained from K
by a sequence of extensiong@f pick any vertex x in G and add with an edg€x, X'}, (8) pick any vertex X in



G and add xwith edgegx, X'} and{X,y} for all y € N(X), or (y) pick any vertex x in G and add with edges
{x,y} for ally € N(X).

In case &), we say that the new graph is obtained by attachipgradant vertex’xand in casess) and ¢), we
say that the new graph is obtained $plitting the vertexx. We note that in casgg), x andx’ are strong siblings,
and in casey), x andx’ are weak siblings.

A connected grapl® is ptolemaicif for any four verticesu, v, w, x of G, d(u, v)d(w, X) < d(u, w)d(v, X) +
d(u, x)d(v, w). We will use the following characterization of ptolemaic graphs due to Howorka [16]:

Theorem 2 The following conditions are equivalent: (1) G is ptolemaic; (2) G is distance hereditary and chordal;
(3) for all distinct nondisjoint maximal cliques ® of G, Pn Q separates R Q and Q\ P.

Let V be a set oh vertices. Two setX andY are said to béncomparableif XNnY # 0, X\Y # 0, and
Y\ X # 0. Afamily F c 2V \ {{0}} is said to bdaminarif ¥ contains no incomparable sets; that is, for any pair
of two distinct setsX andY in F satisfy eitheiXNY =0, X c Y, orY c X. Given a laminar familyF, we define
laminar digraphT (%) = (¥, E';c) as follows;E contains an arcq, Y) if and only if X c Y and there are no other
subse such thatX c Z c Y, for any sets andY. We denote the underlying graphB6F) by T(F) = (¥, E¢).
The following two lemmas for the laminar digraph are known (see, e.g., [20, Chapter 2.2]);

Lemma 3 T(¥) is a forest.
Lemma 4 If a family 7 c 2V is laminar, we haved7| < 2|V| - 1.

Hence, hereafter, we call(F) (T(¥)) a (directed) laminar forest. We regard each maximal (directed) tree in
the laminar foresT () (T(F)) as a (directed) tree rooted at the maximal set, whose outdegree ‘E(ﬁ‘)n We
define dabel of each nod&, in T(F), denoted by/(Sy), as follows: IfSg is a leaf,£(Sg) = So. If So is not a leaf
and has childreB1, Sy, ..., Sh, £(So) = So\(S1US,U---USy). Thatis, each vertexin V appears id(S) whereS
is the minimal set containing SinceF is laminar, each vertex M appears exactly once #{S) for someS C V,
and its corresponding node is uniquely determined. We note that internal nofigs )imave a labe® when it is
partitioned completely by its subsets#n (For example, fol = {a,b} and¥ = {X = {a,b},Y = {a},Z = {b}},
we havef(X) = {0}, ¢(Y) = {a}, and{(Z) = {b}.)

3 A Tree Representation of Ptolemaic Graphs

In this section, we show that ptolemaic graphs have a canonical tree representation, and it can be constructed in
linear time. We also show some applications.
3.1 A Tree Representation
For a ptolemaic grap® = (V, E), let M(G) be the set of all maximal cliques, i.e.,
M(G) :={M | M is a maximal clique irG},

andC(G) be the set of nonempty vertex sets defined below:

C(G) = U {C|C = NyesM,C # 0}.
SCM(G)

Each vertex sef € C(G) is a nonempty intersection of some maximal cliques. He@i{®) contains all maximal
cligues, and ead in C(G) induces a cliqgue. We also denote 5{G) the setC(G) \ M(G). That is, each vertex set
L € L(G) is an intersection of two or more maximal cliques, and hdnisea non-maximal clique. The following
properties are crucial.

Theorem 5 Let G = (V, E) be a ptolemaic graph. Lef be a family of sets i(G) such thatu L c M for
some maximal clique M M(G). Then¥ is laminar.



Proof. To derive a contradiction, we assume tifais not laminar. Then we have two incomparable vertex sets
L; andL, which are properly contained in the maximal cligMe Letv, v, v, be vertices in.; N Ly, L \ Ly, and

L2 \ Ly, respectively. By definition, there are sets of maximal cligMgsM?, ..., M2, M1, M3, ..., M} such that
Li=MInMZn---nM2andL, = MJ N MZn--- N M). Here, if everyM} with 1 < i < a containsv,, we have

Vs € L1. Thus, there is a maximal cquLMi1 with v» ¢ M‘l. Similarly, there is a maximal cliqulylé with v; ¢ Mé.

Let L be M N MJ. Then we haver;, v, ¢ L andv € L (hencelL # 0). Thereforev; € M} \ L andv, € M)\ L.
Moreover, sincer, V2 are inM, {vi,V,} € E. Thus,L = M| n M) does not separate} \ L and M) \ L, which
contradicts Theorem 2(3). ]

Lemma 6 Let C;, C, be any incomparable sets@(G) for a ptolemaic graph G= (V, E). Then GNC; separates
C \ C, and G \ C;.

Proof. Let C := C; N C,. By definition of C(G), C € C(G). LetC/ be the sets i©(G) such thaC c C{ c C; and
there is no othe€’ with C c C’ c C/ fori = 1,2. We first observe th&l; andC} are incomparable: I€] = C,
we haveC; = C;, ¢ C; n C; which contradicts thaf = C; N C; andC c Cj. On the other hand, €] c C,,, we
haveC c C| c C/, which contradicts the definition @,.

We show thaC separate€’ andC),. Let M; be maximal cliques that contai for i = 1,2 such thai; is
incomparable t&C, and M is incomparable t&€;. LetC; := M1 N M. By definition,C c C.. It is suficient to
show thatC = C.. To derive contradictions, we assume that C; \ C. We first assume thate C; \ C,. In the
case, sincé, andC; are incomparable; contains a se€” with (C] N C3) c ((C;nC,)u{v}) c C” c C], which
is a contradiction. Thus, we haveg C; andv ¢ C,.

By definition ofC}, there are maximal cliqued’, M2, ..., MK such thaC; = Nk, Mi. Sincev ¢ Cj, there is
at least one maximal clique} with v ¢ Mi. Similarly, there is at least one maximal cligg with C;, € M} and
v ¢ M,. HoweverC; € Mi, C; € M}, andv ¢ M} U M, imply thatM! \ M} andM, \ M} are connected by. This
is a contradiction to Theorem 2(3). HenkE N M) = My N M, = C; N C, = C; N C,, and itis a separator. B

Now we define a directed grapi(C(G)) = (C(G), A(G)) for a given ptolemaic graps = (V, E) as follows:
two nodesC,, C, € C(G) are joined by an ardd;, C,) if and only if C; ¢ C, and there is no otheZ in C(G) such
thatC,; c C c C,. We denote by (C(G)) the underlying graph of (C(G)).

Theorem 7 A graph G= (V, E) is ptolemaic if and only if the graph(C(G)) is a tree.

Proof. We first assume th& is ptolemaic and show that(C(G)) is a tree. It is not dficult to see thal (C(G)) is
connected. Thus, to derive contradictions, we assumdil@qG)) contains a cycle(,, C,, ..., Ck, C1), which is
a minimal cycle without chords oh(C(G)). SinceC; c C, c --- c Cx c Cy (or vice versa) is impossible, there
is a nodeC, with C5_; D C, c C,yq for somea. Without loss of generality, we assume th@t| is the smallest
among such vertex sets on the cycle. CgiandC, be the nodes on the cycle such tlat; cCx>Cyy1 D -+ D
Ca-1 2 Cac CyqC--- cCyq c Cy D Cyy. Itis not difficult to see thaC,_1 andCa.1, and henc€, andCy are
incomparable. Thus, by Lemma®, separate€y \ Cy andCy \ C,. SinceC, is a separator, we |&y, andGy be
the connected components that contajn, C, andC, \ C, onG[V \ C], respectively.
Now we consider the path = (Cy, Cx_1,Cx-2, ..., Cys2, Cy41, Cy) which does not contai@,. However, since
C, is a separatorP contains at least one vertex €8f in C with C; nCy, # 0. If (CxnCp) \ Cq # 0 and
(CyNnCp)\ Ca # 0, Cx\ Cy andC, \ Cy are connected oB[V \ C,] sinceC, is a clique. Hence eadd, with
CanCyp # 0 satisfiesCy N Cp) \ Ca = 0 or (Cy N Cp) \ C4 = 0. SinceP connect<sy andGy through the separator
Ca, we have at least two vertex séls andC{ such thatC, n Cp) \ C4 = 0 and Cx N C{) \ C4 = 0. Moreover,
sinceC, separate&y andGy, we haveC, N Cp € C,. If CoNCj c C,, P contains smaller separator th@p Thus
Cp N C = C4. ThenP has to contailC, betweerC, andCj, which contradicts the minimality of the cycle.
Therefore T (C(G)) is a tree.
It is easy to see th#&? is ptolemaic ifT(C(G)) is a tree; for each pair of distinct nondisjoint maximal cliques
M; andM,, (M1 N My) separate3 (C(G)), and hencé&s. 1
Hereafter, given a ptolemaic gragh= (V, E), we callT(C(G)) (T(C(G))) a (directed) clique laminar treef
G. We extend the label of a laminar forest to the directed clique laminar tree naturally: Eac8iod&(G) has
a label£(Cp) := Co \ (CL U C, U --- U Cp), where Ci,Co) is an arc ol (C(G)) for 1 < i < h. Intuitively, we
additionally define the label of a maximal clique as follows; the label of a maximal clique is the set of vertices
which are not contained in any other maximal cliques. We note that for each ve@disicorresponding node in
T(C(G)) is uniquely determined by maximal cliques. Therefore, we can define the mapping from each vertex to
the vertex set i@ in T(C(G)): We denote by (V) the cliqueC with v € £(C). When we know whetheZ(v) is in M



or £, we specify it by writingCy (v) or C.(v). An example is given in Figure 2. In Figure 2, each single rectangle
represents a non-maximal clique, each double rectangle represents a maximal clique, and each rectangle contains
its label. We also note that frofi(C(G)) with labels, we can reconstruct the original ptolemaic graph uniquely

up to isomorphism. That is, two ptolemaic grafghsandG; are isomorphic if and only if Iabeleﬁ(C(Gl)) is
isomorphic to labeled (C(G,)).

Intuitively, a clique laminar tree subdivides a clique tree of a chordal graph. For a chordal graph, maximal
cligues are joined in a looser way in the sense that a clique tree for a chordal graph is not always uniquely
determined up to isomorphism. The clique laminar tree subdivides the relationships between maximal cliques by
using their laminar structure.

The following properties of(C(G)) is easy to see, and useful from the algorithmic point of view:

Corollary 8 If G is a ptolemaic graph, we have the following: (1) For each maximal clique M), ¢(M)
consists of simplicial vertices in M. (2) The vertices in a maximal clique M{i©) induce a maximal directed
subtree ofl' (C(G)) rooted at the node M. (3) Each leaf in@(G)) corresponds to a maximal clique jwl(G).

It is well known that a graph is chordal if and only if it is the intersection graph of subtrees of a tree. By
Theorem 7, we obtain an intersection model for ptolemaic graphs as follows:

Corollary 9 LetT be any directed graph such that its underlying graph T is a tree7Lbe any set of subtrees
Ty such thafT,, consists of a root C and all vertices reachable from (7inThen the intersection graph ovetis
ptolemaic. On the other hand, for any ptolemaic graph, there exists such an intersection model.

Proof. The directed clique laminar tre'ﬁ(C(G)) is the base directed graph of the intersection model. For each
v € V, we define the rod€ such thats € £(C). 1

3.2 A Linear Time Construction of Clique Laminar Trees

The main theorem in this section is the following:

Theorem 10 Given a ptolemaic graph G (V, E), the directed clique laminar tre@(C(G)) can be constructed
in O(|V| + |E|) time.

We will make the directed clique laminar tr@€C(G)) by separating the vertices @ into the vertex sets in
C(G) = M(G) U L(G).

We first compute (and fix) a perfect elimination orderingv,, ..., Vv, by the LBFS. The outline of our al-
gorithm is similar to the algorithm for constructing a clique tree for a given chordal graph due to Spinrad in
[23]. For each vertexy,Vn-1,...,V2, V1, We add it into the tree and update the tree. For the current vertex
let vj := min{N.;(v;)}. Then, in Spinrad’s algorithm [23], there are two cases to considgl(v;) = C(v;j) or
N.i(vi) € C(v;). The first case is easy; just agdnto C(v;). In the second case, Spinrad’s algorithm adds a new
maximal cliqueC(v;) that consists oN.;(v) U {v;}. However, in our algorithm, involved case analysis is required.
For example, in the latter case, the algorithm have to handle three vertex sets; two maximalgljqués;(vi)
andC(v;) together with one vertex sét,;(v;) shared by them. In this case, intuitively, our algorithm makes three
distinct setCy with £(Cy) = {vi}, C with £(C) = N,;(v), andC with £(C) = C(v;) \ N,i(v;), and adds two arcs
(CL,Cwm) and C., C); this means that; is in Cy = N.i(vi) U {vi}, C is a cliqgueC(v;), andC_ is the vertex set
shared byCy andC. However, our algorithm has to handle more complicated cases since @ g€and hence
N.i(v;)) can already be partitioned into some vertex sets.

In T(C(G)), each nod€ storest(C). Hence each vertex iB appears exactly once in the tree. To represent it,
each vertew has a pointer to the nod&V) in C(G) = M(G) U L(G). The detail of the algorithm is described as
CuiqueL aminarTREE Shown in Figure 1, and an example of the construction is depicted in Figure 2. In Figure 2,
the left-hand graph gives a ptolemaic graph, and the right-hand trees are clique laminar trees constructed (a) after
adding the vertices 185,14,13 12 11, (b) after adding the vertices ,1¥5, 14,13, 12,11, 10, (c) after adding
the vertices 1615,14,13 12 11, 10,9, 8, and (d) after adding all the vertices. We show the correctness and a
complexity analysis of the algorithm.

We will use the following property of a PEO found by the LBFS of a chordal graph:

Lemma 11 Letw, Vo, ..., Vv, be a PEO found by the LBFS. Thes ij impliesmax{N(vi)} < maxN(v;)}.



Algorithm 1: CriQueL AMINARTREE

Input : A ptolemaic grapltG = (V, E) with a PEOvy, Vs, .. ., V,, obtained by the LBFS,
Output: A clique laminar tre€l.

1 initialize T by the cliqueCy(vy) := {va} and set the pointer from, to Cy(Vy);
2 for i := n—1down toldo
3 letv; := min{N.;(v)};
4 | switch condition of N;(v;) do
5 case(1) N.j(vi) = Cm(vj)
6 updatef(Cy(vj)) := {(Cm(vy)) U {vi} and [Cu(v))| = [Cu(v))| + 1;
7 setCu(vi) := Cm(v));
8 case(2) N.i(vi) = Cr(vj)
9 make a new maximal cligu@y (vi) with £(Cw(vi)) := {vi} and [Cu(vi)| = |CL(v})| + 1;
10 add an arc@(vj), Cm(v));
11 case(3) N.i(v) < C(vj) and |¢(C(v))| = [C(v)))|
1 updatef(C(v;)) = {C(v;)) \ Ni(w) and [A(C(v))| == [ACV))] - IN-i(W);
13 make a new vertex sét:= N.;j(v;) with £(L) := Noj(vi) and |L| := [Nsi(v)l;
14 make a new maximal cliqu@y (v;) with £(Cy(vi)) = {vi} and |Cy(v)] = L] + 1,
15 add arcsl(, C(v;)) and (., Cu(v));
16 case(4) Nsi(vi)  C(vj) and [¢(C(v))| < |C(v))]
17 make a new vertex sét:= N.;j(vi) with £(L) := N.ij(v) N ¢(C(v))) and [L| := [Nsi(Vi)l;
18 updatef(C(vj)) = €(C(vj)) \ L and [¢(C(v)))| := [e(C(vy))| - ILI;
19 make a new maximal cliqu8y (v;) with £(Cy(v)) = {vi} and [Cy (V)| = IL| + 1;
20 remove the arcl(, C(v;)) with L’ c L and add an ard(, L);
21 add arcsl(, C(v;)) and (., Cu(v));
22 end
23 end
24 set the pointer fromy; to C(v));
25 end
26 return T.

Figure 1: A linear time algorithm for the clique laminar trféef a ptolemaic grapls = (V, E).

(@
| 16,15,14,13,12,11 |

(b)

Figure 2: A ptolemaic graph and its clique laminar tree.



Proof. Let vy be maxN(vi)}. If v is a neighbor of/j, we have done. Hence we assume thag¢ N(v;). Then
Theorem 1 in [8] implies that; should have a neighbek with k > k. |

We assume that AlgorithiBLiQuEL aMINARTREE iS going to add;, and letvj := min{N.;(v;)}. We will show that
all possible cases are listed, and in each c@sepeL aMiNaRTREE correctly manages the nodes({G) and their
labels inO(degf;)) time. The following lemma drastically decreases the number of possible cases, and simplifies
the algorithm.

Lemma 12 Let w bemaxN.i(vi)}. We moreover assume that the set(i) has already been divided into some
distinct vertex setsq, Lo, ..., Ly. Then, there is an ordering of the sets such that ¥; c L, C --- C L.

Proof. We first observe thdb[{vi, vi;1, . . . , Vn}] iS ptolemaic ifG is ptolemaic since any vertex induced subgraph of

a chordal graph is chordal, and any vertex induced subgraph of a distance hereditary graph is distance hereditary.
We assume that there is a vertexlset N.;i(v;) such thal does not contaimy. Then, there is a vertex. with

i’ > i that makes the vertex sktbeforev;. Since{vi., v} ¢ E, by Lemma 11y; has another neighbay, with

k' > k. By the property of the LBFS, itis easy to see tB§fvy, . . ., Va}] is connected. LeM; be a maximal clique

{vi} U N.i(vi), andM;, be a maximal clique that contaifig } U L. Then,M; N M;, = L which contains no vertex in

G[{W,...,Vn}]. On the other hand, we haye, w}, {vi, vk} € E. Hence M; N M;. does not separafd; \ M; and

Mi- \ M. ThereforeG[{vi, Vi;1, ..., Va}] is not ptolemaic by Theorem 2(3), which is a contradiction. Thus we have

vk € L, and hence, all the vertex sdig, L,, ..., L, containv. The vertex selN.;(V;) is contained in a maximal
cligue in the ptolemaic grapB[{vi, Vi11, ..., Vn}]. Hence by Theorem 3,, Lo, ..., L, are laminar. Therefore, we
havey € Ly c L, c --- c L, for some suitable ordering. |

Since the grapls is chordal and the vertices are ordered in a perfect elimination ordeMingy;) induces a
clique. By Lemma 12, we have three possible casesN(g)i) = C(v;), (b) N.i(v}) c C(vj) and there are no
vertex sets if\.i(vi), and (c)N.i(v;) c C(v;) and there are vertex sdts c L, c --- C Ly € N,j(v). In the last
case, we note thdt, # N,;(v;); otherwise, we have; € Ly, or consequentlyl., = C(vj) = N.i(v), which is case
(a).

(@) Nsi(vi) = C(vj): We have two subcase€|v;) is a maximal clique (i.eN.i(vi) = Cwm(vj)) or C(v;) is a non-
maximal clique (i.eNs;(vi) = C(v;)). In the former case, we just upda@g (v;) by Cu(v;) U {vi}. This is case
(1) in CuiqueL amINARTREE. N the latter case, there are other vertex set that confaifig) as a subset. Thus we
add a new maximal cliqgu€,(vj) U {vi}. More precisely, we add a new no@g (v) with £(Cu(v;)) = {v} and
ICum(vi)l = |CL(VJ-)| + 1, and a new ardd (v;), Cm(vi)). This is done in case (2) @LiQuel aMINARTREE. We can
check ifN;(v)) = C(v;) by checking if[N;(vi)] = |C(v;)| in O(1) time. Thus it is easy to see that time complexity
is O(1) in both cases.

(b) N.i(vi) € C(v;) and there are no vertex sets irN,;(v;): We removeN.;(v;) from C(v;) and make a new vertex
setN,;(v;) shared byC(v;) andCw(vi) = {vi}UN,;(vj). We can observe thét.;(vi) ¢ C(v;) and there are no vertex
sets inN,; () if and only if [N.i(v)| < |C(vj)| and |€(C(v;))| = |C(vj)|. Thus,CriQueLamINARTREE recognizes
this case inO(1) time, and handles it in case (3). It is easy to see that case (3) can be doa®Nin(V)|) =
O(deg()) time. We note that, in the case, we do not min@{f;) is maximal or not. In any case, the property
does not change f&(v;).

(c) Nsi(vi) ¢ C(vj) and there are vertex setsl; c Ly c --- c Ln € N.i(v): We first observe that the nodes
L1, Lo, ..., Ly, andC(v;) form a directed path il in the case. (Hence we can recognize this cas¥ |N.;(vi)|) =
O(deg{)) time, which will be used in Theorem 13.) Thus we make a new vertek setN.;(v;) with £(L) =
N.i(vi) \ Lh. The setN.i(vi) \ Ln is given byN.;(vi) N £(C(v;j)). Then we updaté(C(v;j)) by £(C(v;j)) \ Nsi(v). It

is easy to add a maximal cligu&v(vi) = {vi} U N.i(v;). Next, we have to update arcs aroudgV;). By Lemma
12, this process is simple; we can fibglin O(deg{;)) time, and there are no other vertex kéthat has an arc
(L”,C(v})) which has to be updated. We note that there can be some vertexwith an arc ', C(v;)). But L’

is independent fronk. in this case, and hence we do not have to mind it. Finally, we change thea€(;))

to (Ln, L), and add the arcd (C(v;)) and (, Cm(v;)). Therefore the time complexity in the last cas©{sleg))
time.

By the above case analyses, Theorem 10 is settled.

3.3 Applications

Theorem 13 The recognition problem for ptolemaic graphs can be solved in linear time.

Proof.(Sketch.) Using the LBFS, we can obtain the perfect elimination ordering idfG is chordal in linear
time (and reject it ifG is not chordal). For a chordal graph, we run modifi@édqueL aMINARTREE. It iS not



difficult to modify CLiqueL aMINARTREE tO reject it if G is not distance hereditary. The key fact is thatGifis
ptolemaic,N.;(v;) corresponds to a maximal directed pathTifC(G)) as follows; suppose that we have vertex

setsLy ¢ Ly € -+ € Lnh € Nsi(v) € C(v;) in case (c). In the case, (1) the nodesL,,..., Ly C(v;) form a
(connected) directed path T(C(G)), (2) there are no other sktwith L c L, (3) all vertices inLy (and hence

L1 ULy U---U Lp) belong toN.;(v), and (4) some vertices i@(v;) may not be inNi(v;). Checking them can

be done inO(|Nsi(vi)|) = O(deg{;)) time for eachi, and otherwise, the vertex sets in the tree are not laminar,

and hence it would be rejected. The cases (a) and (b) can be seen as special cases of the case (c). Therefore, total
running time of the modifie€LiQueL amMINARTREE iS still O(n + m). ]

We note that Theorem 13 is not new. A ptolemaic graph is distance hereditary and chordal [16], distance
hereditary graphs are recognized in linear time [14, 9, 4], and chordal graphs are also recognized in linear time
[22, 24]. Thus, combining them, we have the theorem. We dare to state Theorem 13 to show that we can recognize
and then construct the clique laminar treezoét the same time in linear time, and the algorithm is much simpler
and more straightforward than the combination of known algorithms. (As noted in Introduction, the linear time
algorithm for recognition of distance hereditary graphs is not so simple.)

Theorem 14 The graph isomorphism problem for ptolemaic graphs can be solved in linear time.

Proof. Given a ptolemaic grap® = (V, E), the labeled clique laminar tre‘E(C(G)) is uniquely determined up
to isomorphism by maximal cliques. Each vertexirappears once it (C(G)), and the number of nodes in
T(C(G)) is at most 3V| — 1 by Lemma 4. Thus the representationf¢€(G)) requiresO(|V|) space. The graph
isomorphism problem for labeled trees can be done in linear time (see, e.g., [19]), which completes thekroof.

4 A Tree Representation of Distance Hereditary Graphs

In Section 3.1, we defined a clique laminar tree of a ptolemaic g&aph the clique laminar tree, a no@zhas a
label£(C), which means a vertexis in £(C) if and only if C is the minimal vertex set that contamsWhenG is
ptolemaic, the vertex se, and hencé(C), induce cliques of the original grafih The main idea in this section

is that we loosen the condition “clique” to “clique or independent set.” This idea leads us to new characterizations
of distance hereditary graphs.

4.1 A Tree Representation
Given a graplG = (V, E), we first defineM(G)
M(G) :={M | M is a nonempty set of vertices ¥y},

satisfying the following three properties; (M = V, (ii) each pair of setd1 andM’ is incomparable or disjoint,
and (iii) for any two nondisjoint seti¥l andM’, M N M’ separated! \ M’ andM’ \ M. We next define&(G) to be
a set of non-empty vertex sefsthat satisfies

C(G) = U {C|C =nNuesM,C # 0).
SCM(G)

We also definef(G) := C(G) \ M(G). (We note thatM(G) is not uniquely determined for a distance hereditary
graph, which will be discussed in Section 5.)

We here define thiabel £(C) of each vertex sef € C(G), and the mapping fro¥' to the partition defined by
labels in the same way. We also denotedfy), Cy (v), CL(v) for eachv € V similarly.

We further require that a given gra@ = (V, E) with the setM(G) has the following properties: (iv) Each
partition, or label’(C) for someC, has an attribute either “clique” or “independent” which means the vertex set
¢(C) induces a clique or an independent seGof(v) Each vertex set in C also has an attribute either “clique”
or “independent” as follows: Whef(C) = C, the attribute is the same @&C). Otherwise, the vertex sét is
partitioned into two or more disjoint vertex sdts, L, ..., Ly such thatuiL; = C, LinL; = 0 with i # j, and
there are no other séte £ with Lj c L c C for eachi. (Note that/(C) = L; for somei.) In the case, whe@
is “independent,” there are no edges betweeandL; fori # j. WhenC is “clique,” every vertex irL; is joined
to all vertices inL; fori # j. (vi) The graphG has no other edges. For simplicity, we define that the vertex set of
size< 1is not an independent set but a clique. We denote the attribute of &(@her a nodeC by a(:).

It is easy to see that if all attributes are “clique,” the graph is ptolemaic. This observation leads us to the
following theorem and lemma:
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Figure 3: A distance hereditary graph and its CIL-tree.

Theorem 15 Let G = (V, E) be a graph that has the family1 with the properties (¥ (vi). Let# be a family of
the sets in£(G) such thatu_#L c M for some set Me M(G). Then¥ is laminar.

Lemma 16 Let C;,C, be any incomparable sets if(G) for a graph G = (V, E) with associated family\
satisfying the properties @)vi). Then G N C, separates ¢\ C, and G \ C;.

We can also define a directed graptc(G)) = (C(G), A(G)) and its underlying grapfi (C(G)) for a given
graphG = (V, E) and M in the same way as we introduced in Section 3.1, and obtain the following theorem.

Theorem 17 If a given graph G= (V, E) has a familyM with the properties () (vi), the graph TC(G)) is a tree.

We say that a grapB has aclique-independent laminar trg€IL-tree, for short) ifG has a familyM with
the properties (}(vi). Figure 3(a) depicts an example of a distance hereditary graph, which is the same graph
as in [1, Figure 10]. In the graph, we hai¢ = {{0,1,2,4,6,12}, {0,5,6,12 13}, {1, 3,4}, {2,14}, {3,15,16,17},
{6,7,8,10,11, 12}, {8,9,10}}, and L = {{0,6,12}, {6,12}, {2}, {1, 4}, {3}, {8, 10}}. Hence its ClL-tree is given as
Figure 3(b). In the graph, for example({0, 5, 6,12, 13}) is “clique” anda(¢({0, 5, 6, 12, 13})) is also “clique”;
a({6,7,8,10,11,12}) is “cligue” anda(¢({6, 7,8, 10,11, 12})) is “independent.” Althougta({0, 6,12}) is “inde-
pendent” an@&(¢({0, 6,12})) is “clique,” if the vertex 0 had weak siblinga(¢({0, 6, 12})) would be “independent”
(hence we have all possible cases).

We note thaG = (V, E) with M is connected if and only (M) is “clique” for every maximal seM in M.
Hereafter we assume th@atis connected.

Lemma 18 If a connected graph G (V, E) is distance hereditary, G has a ClL-tree.

Proof. To show this, we use the characterization due to Bandelt and Mulder [1] in Theorem 1. To unify the
notation, we assume that the gradphan be obtained frortv,, vi,_1} by splitting some vertex or attaching a pendant
vertex according to the ordering_», Vi3, . . . , V2, V1. For the ordering, we first s€y (V) = Cm(Vn-1) = {Vn, Va-1}-
Then, according to the ordering, we incrementally grow the ClL-tree for each-2,...,2,1. We have three
cases.

(@) The vertex v; is added as a pendant vertex of/j € N.i(v;). It is easy to see that(C(v;)) is the set of
siblings ofv;. If |€(C(vj))| = 1, that is,v; has no sibling, we mak€w(vi) = {v;,v;} with £(Cu(vi)) = {vi},
and add an arad(v;), Cu(v;)). The attributesa(Cu (Vi) = a(f(Cu(w))) :="clique.” If |C(vj)| > 1, we takev;
from C := C(v)) sincev; is shared byC and the setv;,v;}. Then we make a new vertex gei(v;) := {v;} with
£(CL(vj)) = {v;}, andCwm(vi) = {wi, vj} with £(Cu(vi)) := {vi}. We add arcsE(vj), C) and C.(vj),Cm(vi)). The
attributesa(C.(v;)) = a(f(Cr(vj))) = alCm(v)) = a(¢(Cw(w))) ="clique.”



(B) The vertex v; is added as a strong sibling of some vertex;. If a(¢(C(vj))) is “clique” (including the
case [¢(C(v;))| = 1), we just addy; into £(C(vj)) by settingf(C(v))) := £(C(v))) U {vi} andC(v;) := C(v)).
Whena(£(C(v;))) is “independent,” we remove; from C = C(v;) (and£(C(v;))), and make a new vertex set
Cm(vi) = Cm(vj) := (C\ £(C)) U {v;, vj} with an arc C’, C(v;)) for each arcC’, C). We sett(C(vi)) := {v;, v;} and
a(C(vi)) = a(t(C(vi))) =“clique”.
(y) The vertexv; is added as a weak sibling of some vertex;. If a(¢(C(v;))) is “independent,” we just add
vi into C(v;) and£(C(vj)). Whena(¢(C(v;))) is “clique,” we have two subcases. Ft(C(vj))| = 1, we addy;
into £(C(v;)) and change(£(C(v;))) from “clique” (of one vertex;) to “independent” (of two verticeg andv;).
Otherwise, we make a new vertex §%t;) := C(v;) \ £(C(vj)) with £(C(v)) := {vi}. We add C’, C(v;)) for each
arc C’,C(vj)) and se&(£(C(v;))) = a(C(v;)) :="clique.”

Itis not difficult to see that each construction grows the tree as a ClL-tree foi eagh 2,...,2, 1. Thus we
have the lemma. L]

Lemma 19 If a connected graph G- (V, E) has a CIL-treeT (C(G)), G is distance hereditary.

Proof. We show the lemma by induction of the number of vertice¥inFor K; andK,, we have the lemma
immediately. We assume th& = (V,E) has a corresponding ClL-tree, afd| > 3. We will show thatG
contains at least one pendant vertex, or at least one pair of twins; then we can reduce the number of vertices.

If the CIL-tree has a nod€ such that’(C) consists of two or more vertices, they are twins, and we have done.
Thus we assume that every node in the CIL-fFeeas label with at most one vertex, and hefdeas no twins.

We remind that the CIL-tre@ (C(G)) is a directed tree. Since it represents a laminar family joined by the
vertex sets iV, we can see that (1) each node of outdegree@{(G)) implies a node inM, (2) no two nodes
in M are adjacent, (3) each internal nodeTd¢€(G)) in M has indegree at least two and no outdegree, and (4)
each internal node df (C(G)) in £ has outdegree at least two. The fourth property can be obtained from the fact
that each vertex set iff is an intersection of at least two vertex sets.

We also observe the following claim. L&t € M be a leaf inT (C(G)) that has indegree 1 from a no@en

T(C(G)). ThenC is in £ since any two maximal sets il are incomparable. In this case, (5fithas indegree 0,
M contains a pendant vertex. The claim (5) is proved as follows. Supposeg tfes indegree 0. Then, sin€e
does not contain any other vertex set, @&does not contain any twins, we haj#C)| = |C| = 1. Then, we have
[t(M)] = 1and|M| = 2, that is,C = {u} andM = {u, v} for someu, v € V. SinceG is connectedy is a pendant
vertex.

We now regardT (C(G)) as a tree rooted at any fixed node For the tree, we define thaepthof each
node; the root has depth 0, denoted lepr) = 0, and the depth of each nogeexcept root is defined by
defp) := defq) + 1, whereq is the parent op.

Now, we pick up any nod# of the maximum depth; clearlyyl is a leaf and henc# € M. LetL be the
parent ofM. Then, by the claim (2). is in £. If L is the root of depth Ol has at least two childrekl and M’
sinceM has the maximum depth. Then, by the claim (@)andM’ are in M. However, the vertices ifM) and
¢(M’) becomes twins in the case, which is a contradiction. Thissnot the root. Hence, there is a paré€nof L
in the tree.

We first suppose thaf(C(G)) contains an ardd, L). In the case, by claim (4}, has at least two childre
andM’, which again implies a contradiction. Therefoﬁ{C(G)) contains an arcl(,C), andL has only one child
M. However, in the casé, has indegree 0. Hence, by the claim (®) contains a pendant vertex.

Therefore, when a connected graphhas a ClL-treeG has at least one pendant vertex or a pair of twins.
Hence, by Theorem T is distance hereditary. ]

By Lemmas 18 and 19, we have the main theorem in this section:

Theorem 20 A graph G= (V, E) is distance hereditary if and only if G has a ClL-tree.

Hence we also denote Eﬁ(C(G)) andT (C(G)) the CIL-tree and its underlying tree for a distance hereditary graph
G, respectively. Using the CIL-tree model, we can characterize ptolemaic graphs and bipartite distance hereditary
graphs.

Corollary 21 (cf. [1, Chapter 6]) Let G be a distance hereditary graph, ah(G)) be its ClL-tree. If all
attributes are “clique,” the graph is ptolemaic. On the other hand, if all attributeg(Gf) are “independent” and
all attributes of C are “clique,” the graph is bipartite distance hereditary graph.

In [23], Spinrad mentioned that there is no known intersection model of distance hereditary graphs. Theorems
7 and 20 give us a geometric model of distance hereditary graphs:
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Corollary 22 Let7 be the set of directed subtre®s of a directed graphl that satisfies the properties stated
in Corollary 9. Moreover, each node C @fhas two attributes () and g£(C)), and the values of the attributes
are either “independent” or “clique” Let u and v be any vertices in V. Thinv} € E if and only if (1)
a(¢(C)) =“clique” if T, = T, rooted at C, or (2) &C) ="clique” if T , # T, and the common subtree B and T,

is rooted at C. Then a graph G (V, E) is distance hereditary if and only if the graph has the geometric model
defined above.

Theorem 23 Let G = (V, E) be a distance hereditary graph. Then its CIL-tr'E(rJ(G)) can be constructed in
linear time.

Proof. For a given distance hereditary graphusing the algorithm by Hammer and Fay, we can compute the
sequence of extensions in Theorem 1. Then the proof of Lemma 18 gives us the construction of a CliGtree of
from the ordered vertices. It is easy to see that each step for a veaekasO(deg{)) time. 1

5 Concluding Remarks

In Section 3, the partition of the vertex set is uniquely determined by its maximal cliques for a ptolemaic graph.
Hence the clique laminar tree of a ptolemaic graph is uniquely determined up to isomorphism. However, for a CIL-
tree of a distance hereditary graph, this is not the case. For example, for the graph given in Figure 3(a), we can let
M =1{{0,1,2,4,513},{1,2,4,5,6,12,13},{1,3,4},{2,14},{3,15,16,17},{6,7,8,10,11,12},{8,9,10}}, and £ =
{{1,2,4,5,13},{1,4},{2},{3},{6,12},{8,10}}. Then this family gives a dierent CIL-tree from the one in Figure

3(b). Intuitively, the reason is the following: Given a distance hereditary g@&phe first add suitable edges

and makeG into a ptolemaic grapl®’. Then the clique laminar tree @’ gives a ClL-tree foiG. However,

we have several ways to make a distance hereditary graph into a ptolemaic graph. For example, Figure 3(b) is
obtained when we regard the vertex §&$, 6,12, 13} and{0, 1, 2,4, 6,12} as “maximal cliques,” and the other
ClL-tree is obtained when we regard the vertex §&t$, 2,4, 5, 13} and{1, 2, 4,5, 6, 12 13} as “maximal cliques.”
Therefore, we cannot solve the graph isomorphism problem for distance hereditary graphs by using ClL-trees
immediately. We found a polynomial time algorithm that constructs a canonical ClIL-tree for a given distance
hereditary graph. Howeverftficient, especially linear time, algorithm that solves the graph isomorphism problem
for distance hereditary graphs is remained open, which is mentioned by Spinrad in [23].

As noted in Introduction, distance hereditary graphs can be recognized in linear time by using the algorithms in
[14, 9, 4]. However, they are still complicated. A simple linear algorithm for the recognition of distance hereditary
graphs is still unknown. Especially, is there a simple algorithm based on LBFS that constructs a CIL-tree for any
given distance hereditary graph (and rejects if it is not distance hereditary)?

In this paper, we present new tree representations (data structures) for ptolemaic graphs and distance hereditary
graphs. Our results will enable us to use the dynamic programming technique to solve some basic problems on
these graph classes. To develop sufitient algorithms based on the dynamic programming are future works.
The authors are now preparing dfi@ent algorithm that finds a longest cycle in a given ptolemaic graph.
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