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Abstract

Ptolemaic graphs are graphs that satisfy the Ptolemaic inequality for any four vertices. The graph
class coincides with the intersection of chordal graphs and distance hereditary graphs. The graph
class can also be seen as a natural generalization of block graphs (and hence trees). In this paper, a
new characterization of ptolemaic graphs is presented. It is a laminar structure of cliques, and leads
us to a canonical tree representation. The tree representation gives a simple intersection model for
ptolemaic graphs. The tree representation is constructed in linear time from a perfect elimination
ordering obtained by the lexicographic breadth first search. Hence the recognition and the graph
isomorphism for ptolemaic graphs can be solved in linear time. Using the tree representation, we
also give an O(n) time algorithm for the Hamiltonian cycle problem. The Hamiltonian cycle problem
is NP-hard for chordal graphs, and an O(n + m) time algorithm is known for distance hereditary
graphs.
Keywords: algorithmic graph theory, data structure, Hamiltonian cycle, intersection model, ptole-
maic graphs.

1 Introduction

Recently, many graph classes have been proposed and studied [3, 13]. Among them, the class of chordal
graphs is classic and widely investigated. One of the reasons is that the class has a natural intersection
model and hence a concise tree representation; a graph is chordal if and only if it is the intersection
graph of subtrees of a tree. The tree representation can be constructed in linear time, and the tree is
called a clique tree since each node of the tree corresponds to a maximal clique of the chordal graph (see
[23]). Another reason is that the class is characterized by a vertex ordering, which is called a perfect
elimination ordering. The ordering can also be computed in linear time, and a typical way to find it is
called the lexicographic breadth first search (LBFS) introduced by Rose, Tarjan, and Lueker [22]. The
LBFS is also widely investigated as a tool for recognizing several graph classes (see a comprehensive
survey by Corneil [8]). Using those characterizations, many efficient algorithms have been established
for chordal graphs; to list a few of them, the maximum weighted clique problem, the maximum weighted
independent set problem, the minimum coloring problem [12], the minimum maximal independent set
problem [11], and so on. There are also parallel algorithms to solve some of these problems efficiently
[18].

Distance in graphs is one of the most important topics in algorithmic graph theory. The class of
distance hereditary graphs was introduced by Howorka to deal with the distance property called isometric
[15]. Some characterizations of distance hereditary graphs are given by Bandelt and Mulder [1], D’Atri
and Moscarini [10], and Hammer and Maffray [14]. Especially, Bandelt and Mulder showed that any
distance hereditary graph can be obtained from K2 by a sequence of extensions called “adding a pendant
vertex” and “splitting a vertex.” Using the characterizations, many efficient algorithms have been found
for distance hereditary graphs [6, 2, 5, 21, 17, 7]. However, the recognition of distance hereditary graphs
in linear time is not so simple; Hammer and Maffray’s algorithm [14] fails in some cases, and Damiand,
Habib, and Paul’s algorithm [9] requires to build a cotree in linear time (see [9, Chapter 4] for further
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details), where the cotree can be constructed in linear time by using recent algorithm based on multisweep
LBFS approach by Bretscher, Corneil, Habib, and Paul [4].

In this paper, we focus on the class of ptolemaic graphs. Ptolemaic graphs are graphs that satisfy
the Ptolemaic inequality d(x, y)d(z, w) ≤ d(x, z)d(y, w) + d(x, w)d(y, z) for any four vertices x, y, z, w.
(The inequality is also known as “Ptolemy” inequality which seems to be more popular. However we
use “Ptolemaic,” which is stated by Howorka [16].) Howorka showed that the class of ptolemaic graphs
coincides with the intersection of the class of chordal graphs and the class of distance hereditary graphs
[16]. Hence the results for chordal graphs and distance hereditary graphs can be applied to ptolemaic
graphs. On the other hand, the class of ptolemaic graphs is a natural generalization of block graphs, and
hence trees (see [26] for the relationships between related graph classes). However, there are relatively
few known results specified to ptolemaic graphs. The reason seems that the class of ptolemaic graphs
has no useful characterizations from the viewpoint of the algorithmic graph theory.

We propose in this paper a tree representation of ptolemaic graphs which is based on the laminar
structure of cliques of a ptolemaic graph. The tree representation also gives a natural intersection model
for ptolemaic graphs, which is defined over directed trees. The tree representation can be constructed
in linear time for a ptolemaic graph. The construction algorithm can also be modified to a recognition
algorithm which runs in linear time. It is worth remarking that the algorithm is quite simple, especially,
much simpler than the combination of two recognition algorithms for chordal graphs and distance hered-
itary graphs. In the construction and the recognition, the ordering of the vertices produced by the LBFS
plays an important role. Therefore, our result adds the class of ptolemaic graphs to the list of graph
classes that can be recognized efficiently using the LBFS. Moreover, the tree representation is canonical
up to isomorphism. Hence, using the tree representation, we can solve the graph isomorphism problem
for ptolemaic graphs in linear time. (We note that a clique tree of a chordal graph is not canonical and
the graph isomorphism problem for chordal graphs is graph isomorphism complete.)

The tree representation enables us to use the dynamic programming technique for some problems
on ptolemaic graphs G = (V, E). It is sure that the Hamiltonian cycle problem is one of most well
known NP-hard problem, and it is still NP-hard even for a chordal graph, and that an O( |V | + |E| )
time algorithm is known for distance hereditary graphs [17]. Here, we show that the Hamiltonian cycle
problem can be solved in O( |V | ) time using the technique if a ptolemaic graph is given in the tree
representation.

2 Preliminaries

The neighborhood of a vertex v in a graph G = (V, E) is the set NG(v) = {u ∈ V | {u, v} ∈ E}, and the
degree of a vertex v is |NG(v)| and is denoted by degG(v). For a subset U of V , we denote by NG(U)
the set {v ∈ V | v ∈ N(u) for some u ∈ U}. If no confusion can arise we will omit the index G. Given
a graph G = (V, E) and a subset U of V , the induced subgraph by U , denoted by G[U ], is the graph
(U, E′), where E′ = {{u, v} | u, v ∈ U and {u, v} ∈ E}. Given a graph G = (V, E), its complement is
defined by Ē = {{u, v} | {u, v} 6∈ E}, and is denoted by Ḡ = (V, Ē). A vertex set I is an independent
set if G[I ] contains no edges, and then the graph Ḡ[I ] is said to be a clique.

Given a graph G = (V, E), a sequence of the distinct vertices v1, v2, . . . , vl is a path, denoted by
(v1, v2, . . . , vl), if {vj , vj+1} ∈ E for each 1 ≤ j < l. The length of a path is the number of edges on the
path. For two vertices u and v, the distance of the vertices, denoted by d(u, v), is the minimum length
of the paths joining u and v. A cycle is a path beginning and ending with the same vertex. A cycle is
said to be a Hamiltonian cycle if it visits every vertex in a graph exactly once.

An edge which joins two vertices of a cycle but is not itself an edge of the cycle is a chord of that
cycle. A graph is chordal if each cycle of length at least 4 has a chord. Given a graph G = (V, E), a
vertex v ∈ V is simplicial in G if G[N(v)] is a clique in G. An ordering v1, . . . , vn of the vertices of V

is a perfect elimination ordering (PEO) of G if the vertex vi is simplicial in G[{vi, vi+1, . . . , vn}] for all
i = 1, . . . , n. Once a vertex ordering is fixed, we denote N(vj) ∩ {vi+1, . . . , vn} by N>i(vj). We also
use the notions “min” and “max” to denote the first and the last vertices in an ordered set of vertices,
respectively. It is known that a graph is chordal if and only if it has a PEO (see [3, Section 1.2] for
further details). A typical way of finding a perfect elimination ordering of a chordal graph in linear time
is the lexicographic breadth first search (LBFS), which is introduced by Rose, Tarjan, and Lueker [22],
and a comprehensive survey is presented by Corneil [8].
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It is also known that a graph G = (V, E) is chordal if and only if it is the intersection graph of subtrees
of a tree T (see [3, Section 1.2] for further details). Let Tv denote the subtree of T corresponding to the
vertex v in G. Then we can assume that each node c in T corresponds to a maximal clique C of G such
that C contains v on G if and only if Tv contains c on T . Such a tree T is called a clique tree of G. From
a perfect elimination ordering of a chordal graph G, we can construct a clique tree of G in linear time
[23]. We sometimes unify a node c of a clique tree T with a maximal clique (or a vertex set) C of G.

Given a graph G = (V, E) and a subset U of V , an induced connected subgraph G[U ] is isometric if
the distances in G[U ] are the same as in G. A graph G is distance hereditary if G is connected and every
induced path in G is isometric.

A connected graph G is ptolemaic if for any four vertices u, v, w, x of G, d(u, v)d(w, x) ≤
d(u, w)d(v, x) + d(u, x)d(v, w). We will use the following characterization of ptolemaic graphs due to
Howorka [16]:

Theorem 1 The following conditions are equivalent: (1) G is ptolemaic; (2) G is distance hereditary
and chordal; (3) for all distinct nondisjoint maximal cliques P, Q of G, P ∩Q separates P \Q and Q\P .

Let V be a set of n vertices. Two sets X and Y are said to be overlapping if X ∩ Y 6= ∅, X \ Y 6= ∅,
and Y \ X 6= ∅. A family F ⊆ 2V \ {{∅}} is said to be laminar if F contains no overlapping sets; that
is, for any pair of two distinct sets X and Y in F satisfy either X ∩ Y = ∅, X ⊂ Y , or Y ⊂ X . Given a
laminar family F , we define laminar digraph

−→
T (F) = (F ,

−→
EF) as follows;

−→
EF contains an arc (X, Y ) if

and only if X ⊂ Y and there are no other subset Z such that X ⊂ Z ⊂ Y , for any sets X and Y . We
denote the underlying graph of

−→
T (F) by T (F) = (F , EF ). The following two lemmas for the laminar

digraph are known (see, e.g., [20, Chapter 2.2]);

Lemma 2 T (F) is a forest.

Lemma 3 If a family F ⊆ 2V is laminar, we have |F| ≤ 2 |V | − 1.

Hence, hereafter, we call T (F) (
−→
T (F)) a (directed) laminar forest. We regard each maximal (directed)

tree in the laminar forest T (F) (
−→
T (F)) as a (directed) tree rooted at the maximal set, whose outdegree

is 0 in
−→
T (F). We define a label of each node S0 in

−→
T (F), denoted by `(S0), as follows: If S0 is a leaf,

`(S0) = S0. If S0 is not a leaf and has children S1, S2, . . . , Sh, `(S0) = S0 \ (S1 ∪ S2 ∪ · · · ∪ Sh). That
is, each vertex v in V appears in `(S) where S is the minimal set containing v. Since F is laminar,
each vertex in V appears exactly once in `(S) for some S ⊆ V , and its corresponding node is uniquely

determined. We note that internal nodes in
−→
T (F) have a label ∅ when it is partitioned completely by

its subsets in F . (For example, for V = {a, b} and F = {X = {a, b}, Y = {a}, Z = {b}}, we have
`(X) = {∅}, `(Y ) = {a}, and `(Z) = {b}.)

3 A Tree Representation of Ptolemaic Graphs

In this section, we show that ptolemaic graphs have a canonical tree representation, and it can be
constructed in linear time.

3.1 A Tree Representation

For a ptolemaic graph G = (V, E), let M(G) be the set of all maximal cliques, i.e.,

M(G) := {M | M is a maximal clique in G},

and C(G) be the set of nonempty vertex sets defined below:

C(G) :=
⋃

S⊆M(G)

{C | C = ∩M∈SM, C 6= ∅}.

Each vertex set C ∈ C(G) is a nonempty intersection of some maximal cliques. Hence, C(G) contains all
maximal cliques, and each C in C(G) induces a clique. We also denote by L(G) the set C(G) \M(G).
That is, each vertex set L ∈ L(G) is an intersection of two or more maximal cliques, and hence L is a
non-maximal clique. The following properties are crucial.
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Theorem 4 Let G = (V, E) be a ptolemaic graph. Let F be a family of sets in L(G) such that ∪L∈FL ⊂
M for some maximal clique M ∈ M(G). Then F is laminar.

Proof. To derive a contradiction, we assume that F is not laminar. Then we have two overlapping vertex
sets L1 and L2 which are properly contained in the maximal clique M . Let v, v1, v2 be vertices in L1∩L2,
L1 \ L2, and L2 \ L1, respectively. By definition, there are sets of maximal cliques M 1

1 , M2
1 , . . . , Ma

1 ,
M1

2 , M2
2 , . . . , M b

2 such that L1 = M1
1 ∩ M2

1 ∩ · · · ∩ Ma
1 and L2 = M1

2 ∩ M2
2 ∩ · · · ∩ M b

2 . Here, if every
M i

1 with 1 ≤ i ≤ a contains v2, we have v2 ∈ L1. Thus, there is a maximal clique M i
1 with v2 6∈ M i

1.
Similarly, there is a maximal clique M

j
2 with v1 6∈ M

j
2 . Let L be M i

1 ∩ M
j
2 . Then we have v1, v2 6∈ L

and v ∈ L (hence L 6= ∅). Therefore v1 ∈ M i
1 \ L and v2 ∈ M

j
2 \ L. Moreover, since v1, v2 are in M ,

{v1, v2} ∈ E. Thus, L = M i
1 ∩ M

j
2 does not separate M i

1 \ L and M
j
2 \ L, which contradicts Theorem

1(3).

Lemma 5 Let C1, C2 be any overlapping sets in C(G) for a ptolemaic graph G = (V, E). Then C1 ∩C2

separates C1 \ C2 and C2 \ C1.

Proof. Let C := C1 ∩ C2. By definition of C(G), C ∈ C(G). Let C ′
i be the sets in C(G) such that

C ⊂ C ′
i ⊂ Ci and there is no other C ′ with C ⊂ C ′ ⊂ C ′

i for i = 1, 2. We first observe that C ′
1 and

C ′
2 are overlapping: If C ′

1 = C ′
2, we have C ′

1 = C ′
2 ⊆ C1 ∩ C2 which contradicts that C = C1 ∩ C2 and

C ⊂ C ′
1. On the other hand, if C ′

1 ⊂ C ′
2, we have C ⊂ C ′

1 ⊂ C ′
2 which contradicts the definition of C ′

2.
We show that C separates C ′

1 and C ′
2. Let Mi be maximal cliques that contains C ′

i for i = 1, 2
such that M1 is overlapping to C ′

2 and M2 is overlapping to C1. Let Cc := M1 ∩ M2. By definition,
C ⊆ Cc. It is sufficient to show that C = Cc. To derive contradictions, we assume that v ∈ Cc \ C. We
first assume that v ∈ C ′

1 \ C ′
2. In the case, since M2 and C ′

1 are overlapping, C contains a set C ′′ with
(C ′

1 ∩ C ′
2) ⊂ ((C ′

1 ∩ C ′
2) ∪ {v}) ⊆ C ′′ ⊂ C ′

1, which is a contradiction. Thus, we have v 6∈ C ′
1 and v 6∈ C ′

2.
By definition of C ′

1, there are maximal cliques M 1
1 , M2

1 , . . . , Mk
1 such that C ′

1 = ∩k
i=1M

i
1. Since

v 6∈ C ′
1, there is at least one maximal clique M i

1 with v 6∈ M i
1. Similarly, there is at least one maximal

clique M
j
2 with C ′

2 ⊆ M
j
2 and v 6∈ M

j
2 . However, C ′

1 ⊆ M i
1, C ′

2 ⊆ M
j
2 , and v 6∈ M i

1 ∪ M
j
2 imply

that M i
1 \ M

j
2 and M

j
2 \ M i

1 are connected by v. This is a contradiction to Theorem 1(3). Hence

M i
1 ∩ M

j
2 = M1 ∩ M2 = C ′

1 ∩ C ′
2 = C1 ∩ C2, and it is a separator.

Now we define a directed graph
−→
T (C(G)) = (C(G), A(G)) for a given ptolemaic graph G = (V, E) as

follows: two nodes C1, C2 ∈ C(G) are joined by an arc (C1, C2) if and only if C1 ⊂ C2 and there is no

other C in C(G) such that C1 ⊂ C ⊂ C2. We denote by T (C(G)) the underlying graph of
−→
T (C(G)).

Theorem 6 A graph G = (V, E) is ptolemaic if and only if the graph T (C(G)) is a tree.

Proof. We first assume that G is ptolemaic and show that T (C(G)) is a tree. It is not difficult to see
that T (C(G)) is connected. Thus, to derive contradictions, we assume that T (C(G)) contains a cycle
(C1, C2, . . . , Ck, C1), which is a minimal cycle without chords on T (C(G)). Since C1 ⊂ C2 ⊂ · · · ⊂ Ck ⊂
C1 (or vice versa) is impossible, there is a node Ca with Ca−1 ⊃ Ca ⊂ Ca+1 for some a. Without
loss of generality, we assume that |Ca| is the smallest among such vertex sets on the cycle. Let Cx

and Cy be the nodes on the cycle such that Cx−1 ⊂ Cx ⊃ Cx+1 ⊃ · · · ⊃ Ca−1 ⊃ Ca ⊂ Ca+1 ⊂ · · · ⊂
Cy−1 ⊂ Cy ⊃ Cy+1. It is not difficult to see that Ca−1 and Ca+1, and hence Cx and Cy are overlapping.
Thus, by Lemma 5, Ca separates Cx \Cy and Cy \Cx. Since Ca is a separator, we let Gx and Gy be the
connected components that contain Cx \ Cy and Cy \ Cx on G[V \ Ca], respectively.

Now we consider the path P = (Cx, Cx−1, Cx−2, . . . , Cy+2, Cy+1, Cy) which does not contain Ca.
However, since Ca is a separator, P contains at least one vertex set Cb in C with Ca ∩ Cb 6= ∅. If
(Cx ∩ Cb) \ Ca 6= ∅ and (Cy ∩ Cb) \ Ca 6= ∅, Cx \ Cy and Cy \ Cx are connected on G[V \ Ca] since
Cb is a clique. Hence each Cb with Ca ∩ Cb 6= ∅ satisfies (Cx ∩ Cb) \ Ca = ∅ or (Cy ∩ Cb) \ Ca = ∅.
Since P connects Gx and Gy through the separator Ca, we have at least two vertex sets Cb and C ′

b such
that (Cy ∩ Cb) \ Ca = ∅ and (Cx ∩ C ′

b) \ Ca = ∅. Moreover, since Ca separates Gx and Gy, we have
Cb ∩ C ′

b ⊆ Ca. If Cb ∩ C ′
b ⊂ Ca, P contains smaller separator than Ca. Thus Cb ∩ C ′

b = Ca. Then P has
to contain Ca between Cb and C ′

b, which contradicts the minimality of the cycle.
Therefore, T (C(G)) is a tree.
It is easy to see that G is ptolemaic if T (C(G)) is a tree; for each pair of distinct nondisjoint maximal

cliques M1 and M2, (M1 ∩ M2) separates T (C(G)), and hence G.
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Hereafter, given a ptolemaic graph G = (V, E), we call T (C(G)) (
−→
T (C(G))) a (directed) clique laminar

tree of G. We extend the label of a laminar forest to the directed clique laminar tree naturally: Each
node C0 in C(G) has a label `(C0) := C0 \ (C1 ∪ C2 ∪ · · · ∪ Ch), where (Ci, C0) is an arc on

−→
T (C(G))

for 1 ≤ i ≤ h. Intuitively, we additionally define the label of a maximal clique as follows; the label
of a maximal clique is the set of vertices which are not contained in any other maximal cliques. We
note that for each vertex in G its corresponding node in T (C(G)) is uniquely determined by maximal
cliques. Therefore, we can define the mapping from each vertex to the vertex set in C in T (C(G)): We
denote by C(v) the clique C with v ∈ `(C). When we know whether C(v) is in M or L, we specify it by
writing CM (v) or CL(v). An example is given in Figure 2. In Figure 2, each single rectangle represents
a non-maximal clique, each double rectangle represents a maximal clique, and each rectangle contains
its label. We also note that from

−→
T (C(G)) with labels, we can reconstruct the original ptolemaic graph

uniquely up to isomorphism. That is, two ptolemaic graphs G1 and G2 are isomorphic if and only if
labeled

−→
T (C(G1)) is isomorphic to labeled

−→
T (C(G2)).

Intuitively, a clique laminar tree subdivides a clique tree of a chordal graph. For a chordal graph,
maximal cliques are joined in a looser way in the sense that a clique tree for a chordal graph is not always
uniquely determined up to isomorphism. The clique laminar tree subdivides the relationships between
maximal cliques by using their laminar structure.

The following properties of
−→
T (C(G)) is easy to see, and useful from the algorithmic point of view:

Corollary 7 If G is a ptolemaic graph, we have the following: (1) For each maximal clique M in M(G),
`(M) consists of simplicial vertices in M . (2) The vertices in a maximal clique M in M(G) induce a

maximal directed subtree of
−→
T (C(G)) rooted at the node M . (3) Each leaf in T (C(G)) corresponds to a

maximal clique in M(G).

It is well known that a graph is chordal if and only if it is the intersection graph of subtrees of a tree.
By Theorem 6, we obtain an intersection model for ptolemaic graphs as follows:

Corollary 8 Let
−→
T be any directed graph such that its underlying graph T is a tree. Let T be any

set of subtrees
−→
Tv such that

−→
Tv consists of a root C and all vertices reachable from C in

−→
T . Then the

intersection graph over T is ptolemaic. On the other hand, for any ptolemaic graph, there exists such
an intersection model.

Proof. The directed clique laminar tree
−→
T (C(G)) is the base directed graph of the intersection model.

For each v ∈ V , we define the root C such that v ∈ `(C).

3.2 A Linear Time Construction of Clique Laminar Trees

The main theorem in this section is the following:

Theorem 9 Given a ptolemaic graph G = (V, E), the directed clique laminar tree
−→
T (C(G)) can be

constructed in O( |V | + |E| ) time.

We will make the directed clique laminar tree
−→
T (C(G)) by separating the vertices in G into the vertex

sets in C(G) = M(G) ∪ L(G).
We first compute (and fix) a perfect elimination ordering v1, v2, . . . , vn by the LBFS. The outline of

our algorithm is similar to the algorithm for constructing a clique tree for a given chordal graph due to
Spinrad in [23]. For each vertex vn, vn−1, . . . , v2, v1, we add it into the tree and update the tree. For
the current vertex vi, let vj := min{N>i(vi)}. Then, in Spinrad’s algorithm [23], there are two cases
to consider: N>i(vi) = C(vj) or N>i(vi) ⊂ C(vj). The first case is easy; just add vi into C(vj). In
the second case, Spinrad’s algorithm adds a new maximal clique C(vi) that consists of N>i(vi) ∪ {vi}.
However, in our algorithm, involved case analysis is required. For example, in the latter case, the
algorithm have to handle three vertex sets; two maximal cliques {vi} ∪N>i(vi) and C(vj) together with
one vertex set N>i(vi) shared by them. In this case, intuitively, our algorithm makes three distinct sets
CM with `(CM ) = {vi}, CL with `(CL) = N>i(vi), and C with `(C) = C(vj) \ N>i(vi), and adds two
arcs (CL, CM ) and (CL, C); this means that vi is in CM = N>i(vi) ∪ {vi}, C is a clique C(vj), and CL

is the vertex set shared by CM and C. However, our algorithm has to handle more complicated cases
since the set C(vj) (and hence N>i(vi)) can already be partitioned into some vertex sets.
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Algorithm 1: CliqueLaminarTree

Input : A ptolemaic graph G = (V, E) with a PEO v1, v2, . . . , vn obtained by the LBFS,
Output: A clique laminar tree T .
initialize T by the clique CM (vn) := {vn} and set the pointer from vn to CM (vn);1

for i := n − 1 down to 1 do2

let vj := min{N>i(vi)};3

switch condition of N>i(vi) do4

case (1) N>i(vi) = CM (vj)5

update `(CM (vj)) := `(CM (vj)) ∪ {vi} and |CM (vj)| := |CM (vj)| + 1;6

set CM (vi) := CM (vj);7

case (2) N>i(vi) = CL(vj)8

make a new maximal clique CM (vi) with `(CM (vi)) := {vi} and9

|CM (vi)| := |CL(vj)| + 1;
add an arc (CL(vj), CM (vi));10

case (3) N>i(vi) ⊂ C(vj) and |`(C(vj))| = |C(vj)|11

update `(C(vj)) := `(C(vj)) \ N>i(vi) and |`(C(vj))| := |`(C(vj))| − |N>i(vi)| ;12

make a new vertex set L := N>i(vi) with `(L) := N>i(vi) and |L| := |N>i(vi)| ;13

make a new maximal clique CM (vi) with `(CM (vi)) = {vi} and |CM (vi)| := |L| + 1;14

add arcs (L, C(vj)) and (L, CM (vi));15

case (4) N>i(vi) ⊂ C(vj) and |`(C(vj))| < |C(vj)|16

make a new vertex set L := N>i(vi) with `(L) := N>i(vi) ∩ `(C(vj)) and17

|L| := |N>i(vi)| ;
update `(C(vj)) := `(C(vj)) \ L and |`(C(vj))| := |`(C(vj))| − |L| ;18

make a new maximal clique CM (vi) with `(CM (vi)) = {vi} and |CM (vi)| = |L| + 1;19

remove the arc (L′, C(vj)) with L′ ⊂ L and add an arc (L′, L);20

add arcs (L, C(vj)) and (L, CM (vi));21

end22

end23

set the pointer from vi to C(vi);24

end25

return T .26

Figure 1: A linear time algorithm for the clique laminar tree T of a ptolemaic graph G = (V, E).

In
−→
T (C(G)), each node C stores `(C). Hence each vertex in G appears exactly once in the tree. To

represent it, each vertex v has a pointer to the node C(v) in C(G) = M(G) ∪ L(G). The detail of the
algorithm is described as CliqueLaminarTree shown in Figure 1, and an example of the construction
is depicted in Figure 2. In Figure 2, the left-hand graph gives a ptolemaic graph, and the right-hand trees
are clique laminar trees constructed (a) after adding the vertices 16, 15, 14, 13, 12, 11, (b) after adding
the vertices 16, 15, 14, 13, 12, 11, 10, (c) after adding the vertices 16, 15, 14, 13, 12, 11, 10, 9, 8, and (d) after
adding all the vertices. We show the correctness and a complexity analysis of the algorithm.

We will use the following property of a PEO found by the LBFS of a chordal graph:

Lemma 10 Let v1, v2, . . . , vn be a PEO found by the LBFS. Then i < j implies max{N(vi)} ≤
max{N(vj)}.

Proof. Let vk be max{N(vi)}. If vk is a neighbor of vj , we have done. Hence we assume that vk 6∈ N(vj).
Then Theorem 1 in [8] implies that vj should have a neighbor vk′ with k′ > k.

We assume that Algorithm CliqueLaminarTree is going to add vi, and let vj := min{N>i(vi)}.
We will show that all possible cases are listed, and in each case, CliqueLaminarTree correctly manages
the nodes in C(G) and their labels in O(deg(vi)) time. The following lemma drastically decreases the
number of possible cases, and simplifies the algorithm.

Lemma 11 Let vk be max{N>i(vi)}. We moreover assume that the set N>i(vi) has already been divided
into some distinct vertex sets L1, L2, . . . , Lh. Then, there is an ordering of the sets such that vk ∈ L1 ⊂
L2 ⊂ · · · ⊂ Lh.
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Figure 2: A ptolemaic graph and its clique laminar tree.

Proof. We first observe that G[{vi, vi+1, . . . , vn}] is ptolemaic if G is ptolemaic since any vertex induced
subgraph of a chordal graph is chordal, and any vertex induced subgraph of a distance hereditary graph
is distance hereditary.

We assume that there is a vertex set L ⊂ N>i(vi) such that L does not contain vk. Then, there
is a vertex vi′ with i′ > i that makes the vertex set L before vi. Since {vi′ , vk} 6∈ E, by Lemma
10, vi′ has another neighbor vk′ with k′ > k. By the property of the LBFS, it is easy to see that
G[{vk, . . . , vn}] is connected. Let Mi be a maximal clique {vi} ∪ N>i(vi), and Mi′ be a maximal clique
that contains {vi′} ∪ L. Then, Mi ∩ Mi′ = L which contains no vertex in G[{vk, . . . , vn}]. On the
other hand, we have {vi, vk}, {vi′ , vk′} ∈ E. Hence, Mi ∩ Mi′ does not separate Mi \ Mi′ and Mi′ \ Mi.
Therefore G[{vi, vi+1, . . . , vn}] is not ptolemaic by Theorem 1(3), which is a contradiction. Thus we have
vk ∈ L, and hence, all the vertex sets L1, L2, . . . , Lh contain vk. The vertex set N>i(vi) is contained in
a maximal clique in the ptolemaic graph G[{vi, vi+1, . . . , vn}]. Hence by Theorem 4, L1, L2, . . . , Lh are
laminar. Therefore, we have vk ∈ L1 ⊂ L2 ⊂ · · · ⊂ Lh for some suitable ordering.

Proof of Theorem 9. (Sketch.) Since the graph G is chordal and the vertices are ordered in a perfect
elimination ordering, N>i(vi) induces a clique. By Lemma 11, we have three possible cases; (a) N>i(vi) =
C(vj), (b) N>i(vi) ⊂ C(vj) and there are no vertex sets in N>i(vi), and (c) N>i(vi) ⊂ C(vj) and there
are vertex sets L1 ⊂ L2 ⊂ · · · ⊂ Lh ⊂ N>i(vi). In the last case, we note that Lh 6= N>i(vi); otherwise,
we have vj ∈ Lh, or consequently, Lh = C(vj) = N>i(vi), which is case (a).
(a) N>i(vi) = C(vj): We have two subcases; C(vj) is a maximal clique (i.e. N>i(vi) = CM (vj)) or
C(vj) is a non-maximal clique (i.e. N>i(vi) = CL(vj)). In the former case, we just update CM (vj) by
CM (vj) ∪ {vi}. This is case (1) in CliqueLaminarTree. In the latter case, there are other vertex set
that contains CL(vj) as a subset. Thus we add a new maximal clique CL(vj) ∪ {vi}. More precisely,
we add a new node CM (vi) with `(CM (vi)) = {vi} and |CM (vi)| = |CL(vj)| + 1, and a new arc
(CL(vj), CM (vi)). This is done in case (2) of CliqueLaminarTree. We can check if N>i(vi) = C(vj)
by checking if |N>i(vi)| = |C(vj)| in O(1) time. Thus it is easy to see that time complexity is O(1) in
both cases.
(b) N>i(vi) ⊂ C(vj) and there are no vertex sets in N>i(vi): We remove N>i(vi) from C(vj)
and make a new vertex set N>i(vi) shared by C(vj) and CM (vi) = {vi} ∪ N>i(vj). We can observe
that N>i(vi) ⊂ C(vj) and there are no vertex sets in N>i(vi) if and only if |N>i(vi)| < |C(vj)| and
|`(C(vj))| = |C(vj)| . Thus, CliqueLaminarTree recognizes this case in O(1) time, and handles it in
case (3). It is easy to see that case (3) can be done in O( |N>i(vi)| ) = O(deg(vi)) time. We note that,
in the case, we do not mind if C(vj) is maximal or not. In any case, the property does not change for
C(vj).
(c) N>i(vi) ⊂ C(vj) and there are vertex sets L1 ⊂ L2 ⊂ · · · ⊂ Lh ⊂ N>i(vi): We first observe that

the nodes L1, L2, . . . , Lh, and C(vj) form a directed path in
−→
T in the case. (Hence we can recognize this

case in O( |N>i(vi)| ) = O(deg(vi)) time, which will be used in Theorem 12.) Thus we make a new vertex
set L := N>i(vi) with `(L) = N>i(vi)\Lh. The set N>i(vi)\Lh is given by N>i(vi)∩ `(C(vj )). Then we
update `(C(vj)) by `(C(vj))\N>i(vi). It is easy to add a maximal clique CM (vi) = {vi}∪N>i(vi). Next,
we have to update arcs around C(vj). By Lemma 11, this process is simple; we can find Lh in O(deg(vi))
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time, and there are no other vertex set L′ that has an arc (L′, C(vj)) which has to be updated. We note
that there can be some vertex set L′ with an arc (L′, C(vj)). But L′ is independent from L in this case,
and hence we do not have to mind it. Finally, we change the arc (Lh, C(vj)) to (Lh, L), and add the
arcs (L, C(vj)) and (L, CM (vi)). Therefore the time complexity in the last case is O(deg(vi)) time.

By the above case analyses, Theorem 9 is settled.

4 Applications of Clique Laminar Trees

4.1 The Recognition Problem

Theorem 12 The recognition problem for ptolemaic graphs can be solved in linear time.

Proof.(Sketch.) Using the LBFS, we can obtain a perfect elimination ordering of G in linear time if G is
chordal (and reject it if G is not chordal). For a chordal graph, we run modified CliqueLaminarTree.
It is not difficult to modify CliqueLaminarTree to reject it if G is not distance hereditary. The key
fact is that, if G is ptolemaic, N>i(vi) corresponds to a maximal directed path in

−→
T (C(G)) as follows;

suppose that we have vertex sets L1 ⊂ L2 ⊂ · · · ⊂ Lh ⊂ N>i(vi) ⊂ C(vj) in case (c) in the proof
of Theorem 9. In this case, (1) the nodes L1, L2, . . . , Lh, C(vj) form a (connected) directed path in
T (C(G)), (2) there are no other set L with L ⊂ L1, (3) all vertices in Lh (and hence L1 ∪ L2 ∪ · · · ∪ Lh)
belong to N>i(vi), and (4) some vertices in C(vj) may not be in N>i(vi). Checking them can be done
in O( |N>i(vi)| ) = O(deg(vi)) time for each i, and otherwise, the vertex sets in the tree are not laminar,
and hence it would be rejected. Cases (a) and (b) can be seen as special cases of case (c). Therefore,
the total running time of the modified CliqueLaminarTree is still O(n + m).

We note that Theorem 12 is not new. Since a graph is ptolemaic if and only if it is chordal and
distance-hereditary [16], distance hereditary graphs are recognized in linear time [14, 9, 4], and chordal
graphs are also recognized in linear time [22, 24], we have the result by combining them. We dare to state
Theorem 12 to show that we can recognize if a graph is ptolemaic and then construct its clique laminar
tree at the same time in linear time, and the algorithm is much simpler and more straightforward than the
combination of known algorithms. (As noted in Introduction, the linear time algorithm for recognition
of distance hereditary graphs is not so simple.)

4.2 The Graph Isomorphism Problem

Theorem 13 The graph isomorphism problem for ptolemaic graphs can be solved in linear time.

Proof. Given a ptolemaic graph G = (V, E), the labeled clique laminar tree
−→
T (C(G)) is uniquely

determined up to isomorphism by maximal cliques. Each vertex in V appears once in
−→
T (C(G)), and the

number of nodes in
−→
T (C(G)) is at most 2 |V | − 1 by Lemma 3. Thus the representation of

−→
T (C(G))

requires O( |V | ) space. The graph isomorphism problem for labeled trees can be done in linear time (see,
e.g., [19]), which completes the proof.

4.3 The Hamiltonian Cycle Problem

We assume that a ptolemaic graph G = (V, E) is given by a directed clique laminar tree
−→
T (C(G)) =

(C(G), A(G)). Then the main theorem in this section is the following:

Theorem 14 The Hamiltonian cycle problem for ptolemaic graphs can be solved in O(n) time.

We remind that
−→
T (G) takes O(n) space. We first observe that if

−→
T (G) contains a vertex set C with

|C| = 1, the vertex in C is a cutpoint of G, and hence G does not have a Hamiltonian cycle. This

condition can be checked in O(n) time over
−→
T (G). Hence, hereafter, we assume that G has no cutpoint,

or equivalently, any vertex set C in C satisfies |C| > 1.
Let L be a vertex set in C(G). Each vertex set L′ with (L, L′) ∈ A(G) is said to be a child of L, and

each vertex set L′′ with (L′′, L) ∈ A(G) is said to be a parent of L. That is, a child L′ and a parent L′′ of
L satisfy L′′ ⊂ L ⊂ L′. We define ancestors and descendants for L as in ordinary trees. Note here that
any node L in

−→
T (G) is an ancestor and descendant of itself. We denote by c(L) and p(L) the number of
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children of L and the number of parents of L in
−→
T (G), respectively. Hence c(M) = 0 for each maximal

clique M , and p(L) = 0 for each minimal vertex set L.
We first consider a minimal vertex set L with p(L) = 0. By Lemma 5, each L in L(G) is a separator

of G. It is not difficult to see that if we remove L from G, we have c(L) connected components. Hence, if
|L| < c(L), G cannot have a Hamiltonian cycle. On the other hand, when |L| = c(L), any Hamiltonian
cycle uses all vertices in L to connect each connected components. This fact can be seen as follows
(Figure 3); we first make a cycle of length |L| in L, and next replace each edge by a path through the
vertices in one vertex set corresponding to a child of the node L. We say that we assign each edge to
distinct child of L. (When |L| = 2, we temporarily assign two (multi)edges.) If |L| > c(L), we can
construct a Hamiltonian cycle that uses |L| − c(L) edges in G[L]. In this case, we need to assign c(L)
edges in L to construct a cycle, and we also have |L| − c(L) edges which can be assigned in some other
descendants. We then define the margin m(L) by |L| − c(L) = |`(L)| − c(L). That is, if m(L) < 0, G

has no Hamiltonian cycle, and if m(L) > 0, we have m(L) edges in L which can be assigned in some
descendants. We note that a margin can be inherited only from an ancestor to an descendant.

We here define a distribution δ((Ci, Cj)) of the margin, which is a function assigned to each arc

(Ci, Cj) ∈
−→
T (CG). Let C1, . . . , Cc(L) be the children of L. Then for i = 1, 2, . . . , c(L) each arc (L, Ci)

has a distribution δ((L, Ci)) with
∑c(L)

i=1 δ((L, Ci)) = m(L). That is, each child Ci inherits δ((L, Ci))
margins from L, and some descendants of Ci will consume δ((L, Ci)) margins from L. The way to
compute the distribution will be discussed later.

We next consider a vertex set C with p(C) > 0 and c(C) ≥ 0, that is, C is a vertex set which is not

minimal. Let P1, P2, . . . , Ph be parents of C and C1, C2, . . . , Ck children of C in
−→
T (G). That is, we have

Pi ⊂ C ⊂ Cj for each i and j with 1 ≤ i ≤ h = p(C) and 1 ≤ j ≤ k = c(C) (k = c(C) = 0 when C is
maximal clique). We assume that m(Pi) and δ((Pi, C)) are already defined for each Pi, and m(Pi) ≥ 0
(otherwise G does not have any Hamiltonian cycle). As in case (1), we have to assign c(L) edges in C. In
the case, each parent Pi can be used as a single vertex if δ((Pi, C)) = 0 (Figure 4); we first cut (remove)
the assigned edge in Pi for C, and replace it by the path through all vertices in C and its children. If
δ((Pi, C)) > 0 for some Pi, we can use the additional vertices to connect children Cj . Hence the margin

m(C) is defined by |`(C)| +h+
∑h

i=1 δ((Pi, C))−k = |`(C)| +
∑h

i=1(δ((Pi, C))+1)−k. The distribution

of the margin is defined as the same as in (1); δ((C, Ci)) is a function such that
∑k

i=1 δ((C, Ci)) = m(C).
Above discussion leads us to the following theorem:

Theorem 15 Let G = (V, E) be a ptolemaic graph. Then G has a Hamiltonian cycle if and only if there
exist feasible distributions of margins such that each vertex set C in C satisfies m(C) ≥ 0.

It is easy to see that the margin m(M) for any maximal clique M is positive in case (2) since k = 0.
In other words, each maximal clique M does not require any distribution of margins from its parents.

Our linear time algorithm, say A, runs on T (G); A collects the leaves in T (G), computes the margins,
and repeats this process by computing the margin of C such that all neighbors of C have been processed
except exactly one neighbor. The precise procedure for each vertex set C is described as follows:
(1) When the vertex set C is a leaf of T (G), C is a maximal clique in G, and hence δ((P, C)) is set to 0,
where P is the unique parent of C.
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(2) When C is not a leaf of T (G), let P1, P2, . . . , Ph be parents of C in
−→
T (G), C1, C2, . . . , Ck children of

C in
−→
T (G), and X be the only neighbor which is not processed. Without loss of generality, we assume

that either X = Ph or X = Ck. To simplify the notation, we define h′ = h − 1 and k′ = k if X = Ph,
and h′ = h and k′ = k − 1 if X = Ck. We have three subcases.
(a) If C is a maximal clique in G, or k = 0, C requires no distribution of margins. Hence, A assigns
δ((X, C)) = 0 (since X ⊂ C).
(b) If C is a minimal vertex set with k > 0, h = 0, we have X = Ck. Then A first computes m(C) =
|`(C)| − k′. Then, for each i with i = 1, 2, . . . , k′, each child Ci has been processed, and it requires

distribution δ((C, Ci)) to C. Hence A computes δ′((C, X)) = m(C) −
∑k′

i=1 δ((C, Ci)) = |`(C)| −
∑k′

i=1(δ((C, Ci)) + 1). If δ′((C, X)) < 0, G has no Hamiltonian cycles. Otherwise, A sets δ((C, X)) :=
δ′((C, X)).
(c) When C is not a maximal clique with k > 0 and h > 0, A first computes the margin m(C) =

|`(C)| +
∑h′

i=1(δ((Pi, C)) + 1)− k′. Next, A distributes the margin m(C) to the children C1, . . . , Ck′ by

computing δ′ := m(C) −
∑k′

i=1 δ((C, Ci)) = |`(C)| +
∑h′

i=1(δ((Pi, C)) + 1) −
∑k′

i=1(δ((C, Ci)) + 1). The
value δ′ indicates the margin that will be exchanged between C and X .

If X = Ck, that is, (C, X) is the arc in
−→
T (G), A distributes all margins δ′ to X , or sets δ((C, X)) = δ′.

The margin can be inherited from a parent to a child. Thus, in this case, if δ′ < 0, G has no Hamiltonian
cycles. When δ′ ≥ 0, A will use the margin δ′ when it processes the vertex set X .

On the other hand, if X = Ph, that is, (X, C) is the arc in
−→
T (G), the margin will be distributed

from X to C. Hence, if δ′ < 0, the vertex C borrows margin δ′ from X which will be adjusted when
the vertex X is chosen by A. Thus A sets δ((X, C)) = −δ′ in this case. If δ′ ≥ 0, the margin is useless
since the parent X only counts the number of its children C, and does not use their margins. Therefore,
δ((X, C)) will never referred, and hence A does nothing.
(3) When C is the last node of the process; that is, every value of δ((C, C ′)) or δ((C ′, C)) for each neighbor

C ′ of C has been computed. Let P1, P2, . . . , Ph be parents of C in
−→
T (G), C1, C2, . . . , Ck children of C

in
−→
T (G). In the case, A computes m(C) = |`(C)| +

∑h

i=1(δ((Pi, C)) + 1) −
∑k

i=1(δ((C, Ci)) + 1). If
m(C) < 0, C does not have enough margin. Hence G has no Hamiltonian cycle. Otherwise, every node
has enough margin, and hence G has a Hamiltonian cycle.

A simple example is depicted in Figure 5, where {1, 2, . . . , 7} induces a clique; the node C with
`(C) = {1, 2, 3} has margin 1, and the arc from C to C ′ with C ′ = {1, 2, 3, 4, 5} has distribution 1. The
other nodes have margin 0, and the other arcs have distribution 0. Hence the graph in Figure 5 has a
Hamiltonian cycle, e.g., (1, 8, 2, 9, 3, 10, 4, 11, 5, 14, 16, 15, 7, 12, 6, 13, 1).

The correctness of A can be proved by a simple induction for the number of nodes in
−→
T (G) with

Theorem 15. On the other hand, since T (G) contains O(n) nodes, the algorithm runs in O(n) time and
space, which completes the proof of Theorem 14. We note that the construction of a Hamiltonian cycle
can be done simultaneously in O(n) time and space.
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5 Concluding Remarks

In this paper, we present new tree representations (data structures) for ptolemaic graphs. The result
enables us to use the dynamic programming technique to solve some basic problems on this graph class.
We presented a linear time algorithm for the Hamiltonian cycle problem, as one of such typical examples.
To develop such efficient algorithms based on the dynamic programming for other problems are future
works.
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