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Abstract

It is shown that the vertex cover problem (or the maximum independent set problem) remains
NP-complete even for a cubic, planar, and 3-connected graph of girth greater than 3. The result adds
the restrictions of the 3-connectedness and the girth greater than 3 to the previously known result.
New NP-complete problems for faces on a triangulation of the sphere are produced.

Key words: NP-complete problems, Triangulations of the sphere.

Introduction

It is well known that finding a maximum independent set (MIS), or a vertex cover (VC) of a given graph
is NP-complete even for a cubic planar graph [2]. We show that the VC problem (or the MIS problem)
remains NP-complete even for a cubic, planar, and 3-connected graph of girth greater than 3. We add
the 3-connectedness and the restriction on the girth to the previously known result. The 3-connectedness
of a planar graph is an important property, since a graph forms the edge structure of a convex polyhedra
if and only if it is planar and 3-connected ([3, 1]). Das and Goodrich showed that several well-known
computational geometry problems involving 3-dimensional convex polyhedra are NP-complete. To show
the completeness, they used two NP-complete problems, that is, the VC problem on a 3-connected planar
graph, and the VC problem on a c-stellation of a 3-connected cubic planar graph for any constant ¢ > 4.
Since our problem is contained by two NP-complete problems used by Das and Goodrich above, our result
simplifies their proofs.
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Figure 1: Gadget and its VCs

A triangulation is widely investigated and it has many applications (see [5] for example). The geometric
dual graphs of a 3-connected cubic planar graph is a triangulation of the sphere. For a 3-connected cubic
planar graph G and its geometric dual graph G*, a vertex of G corresponds to a face of G*. Thus the
problems for vertices of G correspond to the problems for faces of G*. Using this, we have NP-complete
problems for faces on a triangulation of the sphere.

2 Main results

2.1 NP-completeness of the problems on a restricted graph

First, we show a lemma for the connectedness of a cubic graph.
Lemma 1 A cubic graph is 3-connected if and only if it is S-line-connected.

Proof. By definition, 3-connected graph is 3-line-connected for any graph. Thus we show that 3-line-
connected cubic graph is 3-connected. Let G = (V, E) be a 3-line-connected cubic graph. Then there
exist three edges ey, ey, and eg whose removal results in a disconnected graph. It is sufficient to show
that each two of e, e2, and ez share no common vertex. Assume that e; and es have a common vertex v
for a contradiction. Since the degree of v equals three, the other edge e, incident to v exists. If e3 = ey, it
is easy to see that G is 1-line-connected for some ¢; with 1 <7 < 3. Otherwise, G is 2-line-connected for
{e3,e4} since the degree of v equals three. In each case, it contradicts that G is 3-line-connected. This
implies that e; and ey share no common vertex. By symmetric, ey, es, and ey share no common vertex.
Let S be a set of one of endpoints of e¢; with 1 < ¢ < 3. Then clearly, S witnesses that G is 3-connected.
| |
For a “gadget” shown in Figure 1(a), the following lemma holds.

Lemma 2 Let U = {vy,ve,v3,v4}. Then (1) the minimum VC of the gadget has size equal to 5, and it
contains no vertex in U; (2) for every VC on the gadget, if it contains at least one vertex in U, it has
size greater than 5, and (3) there exists a VC of size equal to 6, which contains every vertex in U.

Proof. We must select at least four vertices to cover eight edges around the gadget, and at least one of
two center vertices to cover center edge. Thus every VC contains at least five vertices. Thus, the VC of
size five is only one type shown in black in Figure 2(b), which contains no vertex in U. Now, it is not
difficult to see that if a VC contains at least one vertex in U, it has size greater than 5. The VC shown
in black in Figure 1(c) completes the lemma. L]

Reminding that the girth of a graph G is the length of a shortest cycle in G, we are ready to show
main theorem in this section.

Theorem 3 The following problem is NP-complete: For a given S-connected cubic planar graph G of
girth greater than 3 and a positive integer k, us there a VC of size k¥

Proof. We provide a polynomial time reduction from the following known NP-complete problem [2]: For a
given cubic planar graph Gy = (W, Eg) and positive integer kg, is there a VC of size k7 For a given cubic
planar graph Gy, let Sy be a set of each edge whose removal results in a disconnected graph. For each
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Figure 2: Replacement an edge by two gadgets

e = {u,v} € Sy, replace it by two gadgets as shown in Figure 2. Let G; = (Vi, F1) be the resulting graph.
Then, clearly, G is a 2-line-connected cubic planar graph. Here we consider the following claim: Gy has
a VC of size kg if and only if G| has a VC of size ky + 10 | Sg |. To prove the claim, let e = {u,v} € Sy,
and C' C Vj be the minimum VC of Gy. Since C is the VC, it contains v or v. By Lemma 2, if ('
contains both « and v, the minimum VC of GG; must contain at least 12 vertices to cover two gadgets
corresponding to w and v; otherwise, 11 vertices are sufficient to cover two gadgets. This establishes the
claim.

Next, for the 2-line-connected cubic planar graph Gy = (V}, E), let S1 be a set of each pair of edges of
F, whose removal results in a disconnected graph. For each pair in S, select one of them, and replace
it by two gadgets as shown in Figure 2. Let Go = (13, Es) be the resulting graph. Then, clearly, Gy is
a 3-line-connected cubic planar graph. By Lemma 1, GG3 is a 3-connected cubic planar graph. We can
show the following claim by the same way as the first claim: G has a VC of size k; if and only if G has
a VC of size ky + 10| Sy |-

For each cycle of length 3, selecting an arbitrary edge of the cycle, and replacing the edge by two
gadgets in the same way, we have the graph G3 of girth greater than 3. The same arguments as the
claims above completes the proof. L]

For any graph G = (V, E), V' C V is an MIS of G if and only if V — V' is a VC of G [2]. This implies
the following corollary.

Corollary 4 The following problem s NP-complete: For a given 3-connected cubic planar graph G of
girth greater than 3 and a positive integer k, is there a MIS of size k?

Das and Goodrich proved NP-completeness of the following two problems; the VC problem on a 3-
connected planar graphs, and the VC problem on a c-stellations of a 3-connected cubic planar graph for
any coustant ¢ > 4. Here, a stellation of a face f in G as the insertion of a vertex in the interior of f
that we then make adjacently to each vertex of f. A c-stellation of a graph is the result of performing ¢
consecutive stellations on the graph (see [1], for detail). These VC problems contain the VC problem in
Theorem 3. Thus, using the theorem, we can simplify the proofs in [1].

2.2 NP-complete problems on a triangulation of the sphere

Whitney expressed planarity with the existence of dual graphs. Given a plane graph G, its geometric
dual graph G* is constructed as follows; place a vertex in each face of G (including the exterior region)
and, if two regions have an edge e in common, join the corresponding vertices by an edge e* crossing
ounly e. The geometric dual graph of a 3-connected graph is always a simple graph (see [3] for detail).
A triangulation of the sphere is a planar graph such that every face of the graph, including the exterior
region, is a triangle. We first show the following lemma.

Lemma 5 Geometric dual graph of a S-connected cubic planar graph is a triangulation of the sphere.

Proof. Let G = (V, E) be a 3-connected cubic planar graph and G* = (V*, E*) be its geometric dual
graph. Since G is cubic, 3 |V |= 2 | E| holds. By definition of the duality, | E |=| E* | holds. Since G
is connected, Eular’s Theorem states that 2+ |E| — |V | — | V*|= 0 (see [4, Lecture 14] for example).
Combining the equations, we get that | E*|= 3 |V*| —6. Here, G* is a triangulation of the sphere if and
only if | E*|=3|V*| =6 (see [4, Theorem 14.10] for example). This completes the proof. |

For a given triangulation of the sphere and a positive integer k, we define two problems on them as
follows.




Independent triangle set
Question: Are there a triangle set of size k or more such that no two triangles in the set have an
edge in common?

Shaping triangulation
Question: Are there a triangle set of size &k or less such that every edge of the triangulation is had
at least one triangle in the set?

We remark that the shaping triangulation problem is the problem to minimize the number of triangles
to shape the triangulation of the sphere. We show the main theorem in this section.

Theorem 6 Both the independent triangle set problem and the shaping triangulation problem are NP-
complete.

Proof. By Lemma 5, the MIS problem and the VC problem on a 3-connected cubic planar graph can be
reduced to the independent triangle set problem, and the shaping triangulation problem, respectively. B

It is easy to see that the girth of a graph corresponds to the minimum degree of its geometric dual graph.
Thus, the independent triangle set problem and the shaping triangulation problem remain NP-complete
even if we add the restriction that the minimum degree is greater than 3 to a given triangulation.
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