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Who am 1?

My Current Research Interests include

Theoretical Computer Science / System Science
Formal Modeling of Systems / Formal Verification,
Discrete Event Systems / Hybrid Systems,

Systems Biology,
Optimization and Algorithms

Service Science including Human Activities (New)

Smart Voice Messaging System in Nursing /Caregiving
Services



Example: Diagnosis of a Multi-Processor System

A. Grastien, Diagnosis of Discrete-Event Systems Using Satisfiability
Algorithms, AAAI2007, pp.305-310 (2007).
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Example: Diagnosis of a Multi-Processor System

reboot? IReboot IAmBack IReboot

rebooting

. If a message is received, reboot? reboot?
 then the PU also reboots. '

_________________________________________

Processing Unit (PU)

There are at most 616 states in total.



Example: Diagnosis of a Multi-Processor System

Message “Reboot!” Is sent to all neighbors.
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Proposal of Model-less Diagnosis (MLD)

Diagnosis of Discrete Event Systems using event-logs only.
It aims to identify

whether some faults have occurred or not,

which type of faults has occurred,

the time faults have occurred.



Proposal of Model-less Diagnosis (MLD)

Event log
——> acdaacdefbbc... >

Learning Phase

Event log
Target ———> eaccdadcdechc... >
(Faulty)

Diagnosis Phase

Compare the event log with the model



Related Work

Model-based diagnosis (MBD): The exact system model is
required. Computational complexity is very high.
MBD cannot handle 6'¢ states!

Rule-based diagnosis: Empirical knowledge on the system is
required. Many results in Al.
A priori knowledge is not required in MLD.

Process mining: It uses event-logs, but obtaining complete
process models is the goal.

Simpler models sufficient for the diagnosis are used in MLD.




Probabilistic Model: N-Gram Model

N-gram: A string of length N.

Let €4, €5, €5, ..., €, ... be a sequence of event symbols
generated by the target system.

Suppose that the probability that €; occurs depends only on the
N-1 gram just before €;. Then a collection of Conditional
probabilities Pr(e;| €; _y+1 --- €.1) approximately represent the
system behavior.

The idea was shown by C. E. Shannon.



N-Gram Model can approximate Markov chains

2-gram model

all Pr(ala) =0, Pr(bla) = 1, Pr(cla) =0
. Pr(ajb) = 0, Pr(b|b) =0, Pr(clb) =1
(0 (1) ' Pr(alc) = 1, Pr(blc) = 0, Pr(clc) = 0 |

_______________________________________________________

b/1 2-gram model has the complete

c/1 information of the Markov chain.

Event B N
Transition probability

Discrete-time Markov chain



N-Gram Model can approximate Markov chains

e

Discrete-time Markov chain

No N-gram model can represent the
Markov chain since both state 0 and
state 1 are reached by unbounded
sequence b™a.




N-Gram Model can approximate Markov chains

3-Gram Model
Possible states a b C
aa 1 0 1/2 1/2
ab 0,1
ac 2 1/2 1/2 0
ba 0,1
bb 0,1,2
bc 2 1/2 1/2
ca 0 3/5 2/5
cb 2 1/2 1/2
cC —




N-Gram Model can approximate Markov chains

4-Gram Model
Possible states a b C

aaa =
aab 0 3/5 215 0
aac =
aba 1 0 1/2 1/2
abb 0 3/5 215 0
abc —
aca 0 3/5 215 0
ach 2 1/2 1/2 0
bba 0, 1




N-Gram Model for Ergodic Markov Chains

Steady state probability

b/0.3 0.4 0.6 0
o.  P=| 0 03 07|
05 0 05

=[xy, 7y, 7,]

w=nP, ny+m +m,=1
r, =35/107, 7, =30/107, z, = 42/107




N-Gram Model for Ergodic Markov Chains

The set of possible states after sequence abis {0, 1 }.

Pr(alab) =0.6 21/65
relative probability

Pr(b|ab) =0.4-— ¢ +03.— "1 _23/65
7Z'0+7Z'1 7Z'0+7Z'1

14

Pr(c|ab)=0.7- =21/65

Ty + 774



N-Gram Model for Ergodic Markov Chains
I =

The set of possible states after sequence bbis {0, 1, 2 }.

Pr(a|bb)=06-— "0 05.— "2 _42/107

o+ + 7, o+ + 7,

14 7Ty 17!

Pr(b|bb) = 0.4- +0.3. +0.5.

o+ + 7T, Tty + 7 + 7T, o+ + 7T,

=44/107

14

Pr(c|bb)=0.7- =21/107

Tty + 70, + 7T,



3-Gram Model based on steady state probability

N-Gram Model for Ergodic Markov Chains

Possible states a b C
aa 1 0 1/2 1/2
ab 0,1 21/65 23/65 21/65
ac 2 1/2 1/2 0
ba 0,1 21/65 23/65 21/65
bb 0,1,2 42/107 | 44/107 | 21/107
bc 2 1/2 1/2 0
ca 0 3/5 2/5 0
ch 2 1/2 1/2 0

CcC




Derivation of N-Gram Models from Event Logs

If a Markov chain is ergodic, there exists an N-gram model
that precisely represent its behavior at the steady state.
Such an N-gram is obtained from sufficiently long event
sequence W generated by the Markov chain:

Oya (w)
o'ex 03/0’ (W)

Pr(oly) =

where
Y is an (N -1)-gram, and
O, (W) denote the number of occurrences of X in W.



Sequence Profiling

0. Give W, (an event sequence in normal situation) and
W, (k =0, ..., m) (event sequences in various faulty situations).

1. Learning phase: Learn an N-gram model M, from W, .
2. Diagnosis Phase: Given the observed sequence W, and r (> NJ):

@ Based on M, compute the expected number of times E; that

each r-gram Sj occurs in Wiggt.
(@ Count the number of times O, that each r-gram s; occurs in Wy,.

@ Compute logratio d"N(s;) = log(Oy/ E)) for each r-gram s;. We call it
specificity of ;. Let D"N(Wy.g) be the vector each component of which
corresponds to an r-gram S; and has the value d"™N(s;). We call D"™N(W,.,)
profile of Wig.

@ Compute correlation coefficients between D"N(W,.) and D"N(w,) (k =
0, ..., m). Output K that gives the highest correlation.



Sequence Profiling

Test sequence w,, N-gram model for
acdaacdefbbc... hormal situation

Actual value Expected value

acd : 20 acd : 18.3
cda: 25 cda: 22.1
daa: 11 daa: 15.6
aac : 10 aac : 8.9

Profile of w

acd : log(20/18.3)
cda : log(25/22.1)
daa : log(11/15.6)
aac : 1og(10/8.9)

All components are almost 0
iIn normal situation.

Profile is a dimensionless quantity.



Introducing Wildcard Characters into Patterns

In distributed processing environment such as cloud systems,
event-logs from subsystems are interleaved.

To eliminate effect by subsystems that may not be related to
the faults, we consider masking of sequence patterns by
wildcard characters.

Let “n” be the wildcard character and 2 ={a, b }. “n” can be
substituted for any symbol of 2, e.g., anbn = aaba, aabb,
abba, abbb. We call such a pattern a motif.

This idea is inspired by Genom Sequence Analysis.



Faulty Model 1

Faulty Model 1
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Faulty Model 2

Faulty Model 2
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Event Observation and Abstraction

done

reboot!

) 4

W |«
reboot? \S

4

reboot” IReboot AN IReboot
ww rebooﬂng:/;Q;
reboot? reboot?

IReboot and IAmBack are observable, and
other events are unobservable



Event Observation and Abstraction
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Experiment

Event sequences
W, : Normal model
Wy : Normal model
W, : Faulty model 1
W, : Faulty model 2
Wiet : Faulty model 2 = correct estimation

We use a simulator based on Stochastic Petri Nets to obtain
event-logs.



Results

TABLE 1
STATISTICS ON THE NUMBER OF EVENT OCCURRENCES.

wqQ w1 w2 Wtest
a | 12980 | 14,634 | 13,468 | 13,381
x 8,562 8,506 8,619 8,663
Y 8,581 8,177 8,623 8,656
b | 13,237 | 12918 | 13,493 | 13,506




Results

e

r=3 1
wildcard O - = Normal
N=O, ,3 0.8 3= Model 1
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Fig. 6. Correlation coefficients between 'D3=0(wtegt) and other

D3N (w;)’s for N =0,---,3.



Results

e

r=6 1
W|Iijcard 0 - = Normal
N—O, ,5 08 +—N—""""-"17: NModel 1
— Model 2
0.6
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Fig. 7. Correlation coefficients between D6=D(wtest) and other

DS ON (w;)’s for N =0,--- 5.



Results

=es """

r=6
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Results

r=6 1
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Topr 10 SEQUENCES IN FAULTY MODEL 1.

Results

TABLE III

Sequence | Specificity

yarnnn | 0.446642379
rnarnn | 0.385756871
yaynnn | 0.3695851

ayannn | 0.363505804
raynnn | 0.360871346
ananna | 0.3306054235
axannn | 0.321329947
rnaynn | 0.3124333

arxnann | 0.308730344
yanynn | 0.304838413

Sequence patterns with high (low) singularity are used for the cause of the fault.

TABLE 1V
Top 10 SEQUENCES IN FAULTY MODEL 2.

Sequence | Specificity
rbrnnn 0.239204665
yarnnn | 0.178624349
annnya | 0.167122029
yaynnn | 0.155783797
rbnynn 0.144907917
ayannn | 0.142148264
yanxznn | 0.141006404
ynarnn | 0.132237506
arnnny | 0.12804503
anybnn 0.127656013




Future Work

Wildcard characters with variable length
Considering duration of inter-event time
Online diagnosis

Using more complex probabilistic models, e.g., context-sensitive
models



