
Kunihiko HIRAISHI
School of Information Science

Japan Advanced Institute of Science and Technology

Formal Modeling and Verification of
◦ Reactive Systems
◦ Real-Time / Hybrid Systems
Techniques and Algorithms for the Verification of
Hybrid Systems
◦ Discrete Abstraction
◦ Symbolic Simulation
◦ Polyhedral Libraries
◦ Quantifier Elimination
◦ MLD systems and MIQP Solvers

2SICE2008 WS. 2008/8/19

3

Design validation: ensuring the correctness of the design at
the earliest stage possible.
Currently practices methods: simulation and testing.
◦ One is never sure when they have reached their limits or even an

estimate of how many bugs may still lurk in the design.
The approach of formal verification is an alternative to
these techniques.
◦ While simulation and testing explore some of the possible behavior

of the systems, formal verification conducts an exhaustive
exploration of all possible behaviors.

SICE2008 WS. 2008/8/19

4

Model checking is one of approaches to formal verification.
Compared with other approaches, it has the following
advantages:
◦ It is fully automatic, and its application requires no user supervision

or expertise in mathematical disciplines such as logic and theorem
proving.

◦ When the design fails to satisfy a desired property, the process of
model checking always produces a counterexample that
demonstrates a behavior which fails the property and is useful for
fixing the problem.

Basically, model checking is applied to finite-state systems.

SICE2008 WS. 2008/8/19

5

Modeling: Convert a design into a formalism accepted by a
model checking tool.

Specification: State the properties that the design must
satisfy. It is common to use temporal logic (CTL, LTL, ...).

Verification: Check that the model of the design satisfies
the specification. When the answer is no, the model
checking algorithm usually provides an error trace which
will be used debugging.

SICE2008 WS. 2008/8/19

A reactive system is a system that maintains an ongoing
interaction with its environment.
Reactive systems include
◦ concurrent programs
◦ embedded and process control programs,
◦ operation systems, …

These systems must be highly reliable.

6SICE2008 WS. 2008/8/19

P = m: cobegin P0 || P1 coend m’.
P0 :: l0: while True do

NC0: wait(turn = 0);
CR0: turn := 1;
end while
l0’.

P1 :: l1: while True do
NC1: wait(turn = 1);
CR1: turn := 0;
end while
l1’.

Critical region

Critical region

7SICE2008 WS. 2008/8/19

0, ⊥, ⊥

0,l0,l1

0,l0,NC1 0,NC0,l1

0,NC0,NC1 0,CR0,l1

0,CR0,NC1

1, ⊥, ⊥

1,l0,l1

1,l0,NC1 1,NC0,l1

1,NC0,NC11,l0,CR1

1,NC0,CR1

turn
pc0

pc1

wait at NC1

wait at NC1

wait at NC1

wait at NC0

wait at NC0

wait at NC0

8SICE2008 WS. 2008/8/19

Temporal logic is a formalism for describing properties on
sequences of transitions in discrete state systems.
Temporal logic was first suggested by Pnueli in 1977 as a tool
for the verification of concurrent programs. There exist
various versions of temporal logics.
In this talk, a version of temporal logic called CTL
(Computation Tree Logic) is considered. CTL is a branching
time temporal logic.

9SICE2008 WS. 2008/8/19

Linear time:
single computation path

Branching time:
multiple computation paths

current state
Future

computation path

10SICE2008 WS. 2008/8/19

State Formula
◦ E g : g holds for some computation paths (Exist).
◦ A g : g holds for all computation paths (All).
Path formula
◦ X g: g holds in the next state (neXt).
◦ F g : g holds at some state on the path (Future).
◦ G g : g holds at every state on the path (Globally).
◦ g1 U g2: g1 is true until g2 becomes true (Until).

11SICE2008 WS. 2008/8/19

<M, s0> EF f

s0

f

s0

f

f f

<M, s0> AF f= =

12SICE2008 WS. 2008/8/19

< M, s0 > EG f

s0 f

f

f

s0 f

f

ffff

f

< M, s0 > AG f= =

13SICE2008 WS. 2008/8/19

Mutual exclusion:
AG¬(pc0 = CR0 ∧ pc1 = CR1).

Each process never waits forever:
AG(pc0 = NC0 → AF(pc0 = CR0)) ∧
AG(pc1 = NC1 → AF(pc1 = CR1)).

14SICE2008 WS. 2008/8/19

15

The SMV system is a tool developed in CMU for checking
finite state system against specifications in the temporal logic
CTL.

http://www-2.cs.cmu.edu/~modelcheck/smv.html
It provides a programming language for describing the
transition relation of a finite Kripke structure.
All computations are performed on ROBDDs.

SICE2008 WS. 2008/8/19

16

MODULE main
VAR

turn : boolean;
p1 : process proc1(turn);
p2 : process proc2(turn);

ASSIGN
init(turn) := { 0, 1 };

SPEC
AG !(p1.state = CR & p2.state = CR)

SPEC
AG (p1.state = NC -> AF p1.state = CR)

SICE2008 WS. 2008/8/19

17

MODULE proc1(turn)
VAR

state : { L0, NC,CR };
ASSIGN

init(state) := L0;
next(state) :=

case
state = L0 : NC;
state = NC & !turn : CR;
state = CR : L0;
1 : state;

esac;
next(turn) :=

case
state = CR : 1;
1 : turn;

esac;

SICE2008 WS. 2008/8/19

18

% smv concurrent.smv
-- specification AG (!(p1.state = CR & p2.state = CR)) is true
-- specification AG (p1.state = NC -> AF p1.state = CR) is false
-- as demonstrated by the following execution sequence
state 1.1:
turn = 0
p1.state = L0
p2.state = L0
[stuttering]
state 1.2:
[executing process p1]
-- loop starts here --
state 1.3:
p1.state = NC
[stuttering]
state 1.4:
[stuttering]

resources used:
user time: 0.01 s, system time: 0 s
BDD nodes allocated: 667
Bytes allocated: 1245184
BDD nodes representing transition relation: 61 + 6

SICE2008 WS. 2008/8/19

Theorem proving is an alternative way for the formal
verification.

19

Theorem Proving Model Checking
State Space Infinite Finite
Verification Procedure Limited Automatic Fully Automatic
Counter Example No Automatic Automatic
Obtaining Insight of
the Systems

Tell how the
system is correct

Tell how the system
is incorrect

SICE2008 WS. 2008/8/19

Isabelle is a generic proof assistant. It allows mathematical
formulas to be expressed in a formal language and provides
tools for proving those formulas in a logical calculus.
Isabelle/HOL is the specialization of Isabelle for HOL, which
abbreviates Higher-Order Logic.
http://www.cl.cam.ac.uk/research/hvg/Isabelle/index.html

20SICE2008 WS. 2008/8/19

theory List
imports Datatype
begin

datatype 'a list = Nil ("[]")
| Cons 'a "'a list" (infixr "#" 65)

primrec app :: "'a list => 'a list => 'a list" (infixr "@" 65)
where
"[] @ ys = ys" |
"(x # xs) @ ys = x # (xs @ ys)"

primrec rev :: "'a list => 'a list" where
"rev [] = []" |
"rev (x # xs) = (rev xs) @ (x # [])"

21

A theory is a named collection of
types, functions, and theorems,
much like a module in a
programming language.

SICE2008 WS. 2008/8/19

lemma app_Nil2 [simp]: "xs @ [] = xs"
apply(induct_tac xs)
apply(auto)
Done

lemma app_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
apply(induct_tac xs)
apply(auto)
done

lemma rev_app [simp]: "rev(xs @ ys) = (rev ys) @ (rev xs)"
apply(induct_tac xs)
apply(auto)
done

theorem rev_rev [simp]: "rev(rev xs) = xs"
apply(induct_tac xs)
apply(auto)
done
end

22

← Goal

← Subgoals

System support for
automatic generation and proof
of subgoals.

SICE2008 WS. 2008/8/19

Real-time systems maintain a continuous interaction with their
environment and are often subject to timing constraints, i.e.,
operational deadlines from event to system response.

23SICE2008 WS. 2008/8/19

id = 0 → x := 0

x ≤ k →
x := 0,
id := pid

x ≤ k, id = 0 →
x := 0

x > k, id = pid

id := 0

x : clock variable

Fisher’s Mutual Exclusion Protocol

24

Tool: UPPAAL http://www.uppaal.com/

SICE2008 WS. 2008/8/19

Hybrid systems combine both digital and analog components.
Hybrid systems have been used as mathematical models for
many important applications, such as
◦ automated highway systems,
◦ air-traffic management systems,
◦ embedded automotive controllers,
◦ manufacturing systems,
◦ chemical processes,
◦ robotics,
◦ real-time communication network,
◦ real-time circuits, ...

25SICE2008 WS. 2008/8/19

26

Robot Arms

Rod1

Rod2

Reactor

SICE2008 WS. 2008/8/19

27

The system controls the coolant temperature in a reactor tank
by moving two independent control rods.
The goal is to maintain the coolant between the temperatures
L and U.
When the temperature reaches its maximum value U, the
tank must be refrigerated with one of the rods.
A rod can be moved again only if T time units have elapsed
since the end of its previous movement.
If the temperature of the coolant cannot decrease because
there is no available rod, a complete shutdown is required.

SICE2008 WS. 2008/8/19

28

TyTyUx <∧<∧= 21

y1 = T
y2 = T

l0 l1

l2 l3

shutdown

rvx =&
11 =y&
12 =y&
Ux ≤

TyUx ≥∧= 1

0:1 =
=

y
Lx

1vx −=&
11 =y&
12 =y&
Lx ≥

0:2 =
=

y
Lx

Ty
Ux
≥

∧=
2

2vx −=&
11 =y&
12 =y&
Lx ≥

SICE2008 WS. 2008/8/19

29

HyTech is an automatic tool for the analysis of embedded systems.
http://embedded.eecs.berkeley.edu/research/hytech/
HyTech computes the condition under which a linear hybrid system
satisfies a temporal requirement. If the verification fails, then HyTech
generates a diagnostic error trace.

SICE2008 WS. 2008/8/19

30

11 =y&
out1 in1y1 = T

y1 > T

y1 := 0

add1

remove1

in1 out1 y2 = T
y2 > T

y2 := 0

add2

remove2

12 =y&

]1,5[−−∈x&]5,1[∈x&
rod1 rod2no_rod

x ≥ L x ≥ Lx ≤ U

]5,9[−−∈x&

x = U x = U

x = L x = L

add1 add2

remove1 remove2

x = L

×

SICE2008 WS. 2008/8/19

31

var
y1, -- timer for rod 1
y2 -- timer for rod 2

: clock;
x -- clock-translated variable from temperature

: analog;
T, -- minimal time delay before reusing a cooling rod
L, -- minimal acceptable temp
U -- maximal acceptable temp

: parameter;

variables

SICE2008 WS. 2008/8/19

32

automaton rod_1
synclabs: add_1, remove_1;
initially out_1 & y1 = T;

loc out_1: while y1>=0 wait {}
when y1 >= T sync add_1 goto in_1;

loc in_1: while y1>=0 wait {}
when True sync remove_1 do {y1' = 0} goto out_1;

end -- rod_1

Rod 1

SICE2008 WS. 2008/8/19

33

automaton rod_2
synclabs: add_2, remove_2;
initially out_2 & y2 = T;

loc out_2: while y2>=0 wait {}
when y2 >= T sync add_2 goto in_2;

loc in_2: while y2>=0 wait {}
when True sync remove_2 do {y2' = 0} goto out_2;

end -- rod_2

Rod 2

SICE2008 WS. 2008/8/19

34

automaton temp
synclabs: add_1, remove_1, add_2, remove_2;
initially no_rod & x = L;

loc no_rod: while x <= U wait {dx in [1,5]}
when x=U sync add_1 goto rod_1;
when x=U sync add_2 goto rod_2;

loc rod_1: while x >= L wait {dx in [-5,-1]}
when x=L sync remove_1 goto no_rod;

loc rod_2: while x >= L wait {dx in [-9,-5]}
when x=L sync remove_2 goto no_rod;

end -- temp

Tank

SICE2008 WS. 2008/8/19

35

var
init_reg, final_reg, b_reached : region;

init_reg := loc[rod_1] = out_1 & y1 = T
& loc[rod_2] = out_2 & y2 = T
& loc[temp] = no_rod & x = L;

final_reg := loc[temp] = no_rod & x=U
& loc[rod_1] = out_1 & y1 <= T
& loc[rod_2] = out_2 & y2 <= T;

b_reached := reach backward from final_reg endreach;

prints "Control rod NOT available under the following conditions";
print omit all locations hide non_parameters in b_reached &

init_reg endhide;

Specification
SICE2008 WS. 2008/8/19

36

==
HyTech: symbolic model checker for embedded systems
Version 1.04 10/15/96
For more info:

email: hytech@eecs.berkeley.edu
http://www.eecs.berkeley.edu/~tah/HyTech

Warning: Input has changed from version 1.00(a). Use -i for more info
==

Number of iterations required for reachability: 8
Control rod NOT available under the following conditions

23U <= 45T + 23L & L <= U

==
Max memory used = 0 pages = 0 bytes = 0.00 MB
Time spent = 0.08u + 0.05s = 0.13 sec total
==

SICE2008 WS. 2008/8/19

Formal Modeling and Verification of
◦ Reactive Systems
◦ Real-Time / Hybrid Systems
Techniques and Algorithms for the Verification of
Hybrid Systems
◦ Discrete Abstraction
◦ Symbolic Simulation
◦ Polyhedral Libraries
◦ Quantifier Elimination
◦ MLD systems and MIQP Solvers

37SICE2008 WS. 2008/8/19

38

Partition of State Space

SICE2008 WS. 2008/8/19

39

Region R1
Region R2

Bisimulation Predicate
Abstraction

Approximation

Verification All CTL formula Safety property
Partition To be computed Given

yxRyRx ⇒∈∃∈∀ .21 yxRyRx ⇒∈∃∈∃ .21

x y

SICE2008 WS. 2008/8/19

40

[]
[]

[]11)(
0)(01 if3/
0)(01 if3/

)(

)(
1
0

)(
)(cos)(sin
)(sin)(cos

8.0)1(

−∈
⎩
⎨
⎧

<−
≥

=

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡ −
=+

tu
tx
tx

t

tutx
tt
tt

tx

π
π

α

αα
αα

A Piecewise Linear System

Partition by BisimulationR’
R

R1

R2

Pre(R’)

Partition Algorithm

SICE2008 WS. 2008/8/19

41

A

B

Sensor

Delay 2 sec.

on/off

Water Level Monitor

SICE2008 WS. 2008/8/19

42

0l
1=x&
1=y&
Ay ≤

1l
1=x&
1=y&
2≤x

2l
1=x&
2−=y&

By ≥

3l
1=x&
2−=y&

2≤x

1=y
Ay =

0:=x

2=x

By =

0:=x

2=x

Find the values of A and B so that the water level y always
satisfies 1 ≤ y ≤ 12.

SICE2008 WS. 2008/8/19

To compute all possibilities, the region of state values at each
time step is computed as a set of inequalities.
Solving the inequalities by mathematical programming
methods, we can obtain an optimal values for the parameters.

43SICE2008 WS. 2008/8/19

44

l0(X, Y, Time, A, B):-
X1 = X + D, Y1 = Y + D, D >= 0,
Y1 = A,
l1(0, Y1, Time + D, A, B).

0l
1=x&
1=y& 1ly = A

x := 0
y ≤ A

CLP: Constraint Logic Programming

SICE2008 WS. 2008/8/19

45

| ?- l0(X, 1, 0, TT, [A, B]), project([A, B], Z).
A = 10 - _142
B = 12 -2 * _161 - _142
Z = [1 * B >= 5, (-0.5) * B + 0.5 * A >= -1, (-1) * A >= -10]
_142 >= 0
_161 >= 0
-7 = - _169 -2 * _161 - _142
_169 >= 0

*** yes ***

| ?- max(TT, l0(X, 1, 0, TT, [A, B])).
A = 10
B = 5

*** yes *** A3 100

2

5
B

Feasible solution.

Minimizing the number of switches.

SICE2008 WS. 2008/8/19

Manipulations of convex polyhedra are the basis of solving
problems on linear hybrid systems.
There are several libraries for the computation of convex
polyhedra.
◦ Polylib: http://www.ee.byu.edu/faculty/wilde/polyhedra.html
◦ Parma Polyhedra Library, Polka, … , etc.

46SICE2008 WS. 2008/8/19

A quantifier elimination (QE) algorithm transforms formulas
with quantifiers into equivalent formulas without quantifiers.
There are several QE algorithms implemented on symbolic
computation tools such as Maple, Mathematica, and REDUCE.

47

0l
1=x&
1=y& 1ly = A

x := 0
y ≤ A

.'"'0'
"0""

),,,,(
.""

),,',','(

dttyyx
Ayddyydxx

BAtyxteCurrentSta
tdyxyx

BAtyxNextState

+=∧=∧=
∧=∧≥∧+=∧+=

∧
∃∃∃∃∃∃

=

SICE2008 WS. 2008/8/19

The Mixed Logical Dynamical (MLD) framework is a powerful
tool for modeling discrete-time linear hybrid systems.

48

51432

321

321

)()()()(
)()()()()(

)()()()()1(

EkuEkxEkzEkE
kzDkDkuDkCxky

kzBkBkuBkAxkx

++≤+
+++=
+++=+

δ
δ
δ

k is the discrete time-instant, x(k) denotes the states, u(k) the inputs and
y(k) the outputs, with both real and binary components. δ and z represent
binary and auxiliary continuous variables.

Optimal control problem for MLD systems can be solved by
MIQP (Mixed Integer Quadratic Programming) solvers,
such as CPLEX and NUOPT.

SICE2008 WS. 2008/8/19

Easy to formalize, hard to solve.
◦ Combination of online and offline computations.
◦ Guaranteed approximation techniques.

49SICE2008 WS. 2008/8/19

