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Predicate abstraction for Hybrid Systems

 Predicate abstraction is a powerful technique for extracting finite-

state models from infinite-state systems.

 Predicate abstraction has also been applied to the verification of 

hybrid systems [Alur00,Alur02,Alur06].

 Given a hybrid system with linear dynamics and a set of linear 

predicates, the verifier performs a search of the finite discrete 

quotient whose states correspond to the truth assignments to the 

input predicates.

 We propose a technique that can be used for accelerating the 

computation of abstract state spaces for hybrid systems.
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Predicate abstraction: example (1)
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 = 0.8,

 =   1/6 (x1  0, x2 > 0);

 = 1/6 (x1 > 0, x2 > 0);

 =   1/8 (x1  0, x2  0);

 = 1/8 (x1 > 0, x2  0).
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Predicate abstraction: example (2)

Predicates P = { i }

x1  k (k = 1, 0, 1),

x2  k (k = 1, 0, 1).
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Abstract states B

S1 = [1,1,1,1,1,1], …,

S10 = [0,1,1,0,0,1], …,

S16 = [0,0,0,0,0,0].

1 2 3

4

5

6

Transitions 

S10  S11 

x  S10 x’  S11. x  x’

(over-approximation)
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Exact computation
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b(v1,…,vn) : an abstract states with state variables v1,…, vn

CP(b)  Rn: Concretization of b

(R)  { 0, 1}m : Discretization of region R

Im(R)  Rn: Image of region R

ImP(b) := (Im(CP(b))) : Discretized Image of abstract state b

ImP(b)

CP(b)

Im (CP(b))

Discretized image
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Approximated computation (1)
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S1

b2 = [dc, dc, dc, 1, 1, 1]

b1 = [1, 1, 1, dc, dc, dc] 

S1 = b1  b2

Enlarged abstract states B = { bi }

dc :don’t care

Conjunction complete:

Each abstract state is 

represented by conjunction of 

enlarged abstract states.
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Approximated computation (2)
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b(v1,…,vn) : enlarged abstract state with state variables v1,…, vn

B : the set of enlarged abstract states

ImP(CP(b)) : discretized image of b
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Approximated computation (3)

CP(b1)

Im(CP(b1))

ImP(b1)
ImP(b2)

CP(b2)

Im(CP(b2))
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Approximated computation (4)

CP(b1  b2)

ImP(b1)  ImP(b2)

Over-approximation:

ImP(b1  b2) 

ImP(b1)  ImP(b2)



Justification of the Idea (1)

 Discrete-time autonomous system: x(tk+1) = f(x(tk)).

 If f is injective (one-to-one), then Im(Q1  Q2) = Im(Q1)  Im(Q2). [This 

holds for discrete-time linear/affine systems.]

 Even if Im(Q1  Q2) = Im(Q1)  Im(Q2), Im(Q1  Q2) = ImP(Q1)) 

Im(Q2)) does not necessarily hold (discretization error).

 However, the error occurs only around correct boxes.

 If || f 1(x1) – f 1(x2) || / || x1 – x2 ||  K for any x1, x2 (Lipschitz 

continuity of f 1), then || x1 – x2 ||  K || f (x1) – f (x2) ||. [This holds for 

discrete-time linear/affine systems.]

 Suppose that x1  Q1 – Q2, x2  Q2 – Q1, but f(x1) and f(x2) are in 

the same box. 

 Then, there exists a positive real R s.t. || f (x1) – f (x2) ||  R.

 We have || x1 – x2 ||  KR.
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Justification of the Idea (2)
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|| x1 – x2 ||  KR

Same box

 Discretization errorx1

x2



Complexity

 hi : the number of predicates in the i-th axis.

 The number of abstract states is

|B| = Pi = 1, n (hi + 1) = O((1 + m/n)n).

 The number of enlarged abstract states is

|B| = Si = 1, n (hi + 1) = O(m + n).
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Discretization of Polyhedra:

how to compute ImP(b) from Im(CP(b))

 Since Im(CP(b)) is much larger than Im(CP(b)), the approximated 

computation requires more time at this step, provided that the 

computation time for the discretization depends on the size of 

polyhedra. As a result, the approximated computation is not very 

fast. 

 We have develop an efficient algorithm, called the beam method, for 

this step. The algorithm uses convexity of regions.

 The beam method is compared with

 Direct comparison : computing intersection between polyhedron 

P and each box in the axis-aligned bounding box of P,

 Shannon expansion.



Beam Method for 2D Space
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Systems with Inputs
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We embed the input in the state space.

Then the matrix is nonsingular, provided that A is nonsingular.



Computation Results (1)
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where A is an n-dimensional square matrix that represents the 

following rotations:

n = 2: /3 around the origin.

n = 3: /3 around the origin on x23-plane, x13-plane, and x12-plane.

n = 4: /3 around the origin on x12-plane, x23-plane, and x31-plane.

n = 5: /3 around the origin on x12-plane, x23-plane, x34-plane, and x45-

plane.



Computation Results (2)

 tP :  the exact transitions.

 tP
~ : the approximated transitions.

 Evaluation criteria:

 Ratio g ~ = | tP
~ | / | tP |.

 The number of error transitions classified by hamming distance. 

Let #ei be the number of transitions in tP
~  Hi(tP), where Hi(tP) is 

the set of all transitions whose hamming distance to at least one 

of transitions in tP is no more than i.
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Computation Results (3)
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n = 2, Exact

h : the number of predicates in each axis



Computation Results (4)
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n = 2, Approx.



Computation Results (5)
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n = 3, Exact/Approx.



Computation Results (6)
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n = 4, Exact/Approx.



Computation Results (7)
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n = 5, Exact/Approx.



Future Work

 Application to parameter design of hybrid dynamical 

systems.

 Development of method for general predicates.
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