
1

A Complete Axiomatic Semantics
for the CSP Stable-Failures Model

Yoshinao Isobe, AIST, Japan

in cooperation with
Markus Roggenbach, University of Wales Swansea, UK

TPP 2006 (30/11/2006) (also see CONCUR 2006)

2

Overview

1

Process algebra

Introduction

Syntax of unbounded ND

Non-determinism (ND)2

Differences from finite version

Axiom system AF3

4

A deep-encoding of CSP in Isabelle

CSP-Prover

5 Conclusion

Summary and future work

Motivation

Sequentialisation and Normalisation

3

Introduction

4Process algebra

comin out

P

P1 P2

a formal framework to describe and analyze concurrent processes.

P1 = in → com → STOP
P2 = com → out → STOP

P = (P1 |[com]| P2)＼com

3 styles of semantics

• Operational semantics
• Denotational semantics
• Axiomatic semantics

in Q out

Q = in → out → STOP

？

P Q
？

5Operational semantics

|[com]|
in

com

com

out

＼com

in

out

in

τ

out

P1 = in → com → STOP
P2 = com → out → STOP

P = (P1 |[com]| P2)＼com
Q = in → out → STOP

Graph

6Denotational semantics

P1 = in → com → STOP
P2 = com → out → STOP

P = (P1 |[com]| P2)＼com
Q = in → out → STOP

traces(P1) = { 〈〉, 〈in〉, 〈in.com〉}

traces(P2) = { 〈〉, 〈com〉, 〈com.out〉}

traces(P) = { (t1 |[com]| t2)＼com | t1∈traces(P1), t2 ∈traces(P2)}
= { 〈〉, 〈in〉, 〈in.out〉}

traces(Q) = { 〈〉, 〈in〉, 〈in.out〉}

Domain
(traces model)

7Denotational semantics

P1 = in → com → STOP
P2 = com → out → STOP

P = (P1 |[com]| P2)＼com
Q = in → out → STOP

traces(Q) = { 〈〉, 〈in〉, 〈in.out〉}
failures(Q) = {(〈〉,{out}), (〈in〉,{in}), (〈in.out〉,{in,out})}

Domain
(stable-failures
model)

traces(P) = { 〈〉, 〈in〉, 〈in.out〉}

failures(P) = { (〈〉, {out}), (〈in〉, {in}), (〈in.out〉, {in,out})}

refusals (refused events)

8
Axiomatic semantics

= (P1 |[com]| P2)＼com
= ((in → com → STOP) |[com]| (com → out → STOP))＼com
= (in → ((com → STOP) |[com]| (com → out → STOP)))＼com
= in → ((com → STOP) |[com]| (com → out → STOP))＼com
= in → (com → (STOP |[com]| (out → STOP)))＼com
= in → (STOP |[com]| (out → STOP))＼com
= in → (out → (STOP |[com]| STOP))＼com
= in → out → (STOP |[com]| STOP)＼com
= in → out → STOP＼com
= in → out → STOP = Q

P

(a → P)＼a = P＼a
(b → P)＼a = b → (P＼a)

(a → P) |[b]| (b → Q) = a → (P |[b]| (b → Q))[para2]
(a → P) |[a]| (a → Q) = a → (P |[a]| Q)[para1]

[hide1]
[hide2]…

axiom system:

P1 = in → com → STOP
P2 = com → out → STOP

P = (P1 |[com]| P2)＼com

Q = in → out → STOP

by [para2]
by [hide2]
by [para1]
by [hide1]…

9Process algebra (CSP)

Denotational
Semantics

Operational
Semantics

Axiomatic
Semantics

CSP

Definition

Model checking
(e.g. FDR)

Theorem proving
(e.g. CSP-Prover)

The best known results apply for
finitely nondeterministic CSP over
a finite alphabet.
[Brooks(1983) , Roscoe (1998)]

c.f.

open question of CSP

Completeness ?
for unbounded nondeterministic
CSP over an arbitrary alphabet

10Process algebra (CSP)

Denotational
Semantics

Operational
Semantics

Axiomatic
Semantics

CSP

Definition

Model checking
(e.g. FDR)

Theorem proving
(e.g. CSP-Prover)

open question of CSP

The best known results apply for
finitely nondeterministic CSP over
a finite alphabet.
[Brooks(1983) , Roscoe (1998)]

c.f.

Completeness ?
for unbounded nondeterministic
CSP over an arbitrary alphabet

Our question is:

Is it possible to prove the equality of two CSP-processes
by algebraic laws without using denotational semantics?

11

Non-determinism

12
External choices

a → b → STOP □ a → c → STOP a → (b → STOP □ c → STOP)

a a

b c b c

a

external choice □

F

We focus on the stable-failures model suitable for
describing infinite systems and deadlock analysis.

{a,c} {a,b}
{a}

13
Internal choices

a → (b → STOP П c → STOP)

note

a → b → STOP □ a → c → STOP

a a

b c τ τ

a

internal choice П

b c

note

F

{a,c} {a,b}
{a,b},
{a,c}

14Unbounded non-determinism

binary internal choice

Random Number Generator
n ∈ {0, 1}

rand(n)

RNG ＝ (rand(0) → STOP) П (rand(1) → STOP)

general internal choice

Random Number Generator
n ∈ Nat = {0,1,2,...}

rand(n)

RNG ＝ П {rand(n) → STOP | n ∈ Nat }

a set of processes

15

Standard CSP

Syntax

Proc ::= STOP | a → Proc | Proc □ Proc | П (Proc Set) | …

a set of processes

⇒ cardinality mismatch

datatype ‘a proc = STOP
| Act_prefix “ ’a” “ ‘a proc” (_ → _)
| Ext_choice “ ’a proc” “ ‘a proc” (_ □ _)
| G_Int_choice “ ‘a proc set” (П _)
| …

Isabelle type ‘a : type of alphabet (events) Σ

16

CSPTP

Syntax

Proc ::= STOP | a → Proc | Proc □ Proc | П (Proc Fun) | …

process function

Isabelle type

datatype ‘a proc = STOP
| Act_prefix “ ’a” “ ‘a proc” (_ → _)
| Ext_choice “ ’a proc” “ ‘a proc” (_ □ _)
| Set_Int_choice “ ‘a set ⇒ ‘a proc” (Пset _)
| Nat_Int_choice “ nat ⇒ ‘a proc” (Пnat _)
| …

note these types

17
Relation to ‘Standard CSP’

Stable failures
domain F

surjective surjective

Expressive power

CSPTP

‘a set ⇒ ‘a proc
nat ⇒ ‘a proc

syntax

semantics

П (Proc Fun)

Standard CSP

‘a proc set

П (Proc Set)

18Div: The bottom element
(in semantic domain)

Recursive processes

П {Loop(n) | n∈Nat }

a

Div
a Div
a a Div
a a a Div

τ

Loop(0) ＝ Div
Loop(n+1) ＝ a → Loop(n)

Loop ＝ a → Loop

Loop F

F

19

Axiom system

20
Axiom system AF

Important differences from the standard axioms for finite processes appear
in the laws for

AF├ P ＝ Q P Q

(1) parallel composition in combination with timeout (corrected)

(2) internal choice in combination with Skip (extended with infinity)

(3) depth restriction operator (new)

∀P,Q∈Proc. ⇔

axiom system AF

AF is sound and complete for the stable failures equivalence over
unbounded nondeterministic processes with an arbitrary alphabet.

F

21Depth restriction

P↓n : depth restriction by the nth step

examples

(a1→a2→a3→ a4→Stop)↓2 a1→a2→DivF

(a1→a2→Stop)↓2 a1→a2→DivF

(a1→Stop)↓2 a1→STOPF

(a1→a2→a3→Stop)↓2 a1→a2→DivF

(Stop)↓2 STOPF

all the executions are cut
off at the 2nd step

Пnat (λn ● (P↓n))P F

22How to normalise

note

any process

(extended) full normal form

key point :
remove Hiding operators by a function recursively
defined on the process structure.

key point :
normalise ((Пset P(X))↓n) by a function recursively
defined on the depth n.

Induction on the process structure cannot be
applied to a family of processes P(X) (X ⊆Σ)

full sequential form

23How to normalise

note

any process

(extended) full normal form

key point :
remove Hiding operators by a function recursively
defined on the process structure.

key point :
normalise ((Пset P(X))↓n) by a function recursively
defined on the depth n.

Induction on the process structure cannot be
applied to a family of processes P(X) (X ⊆Σ)

full sequential form

However, Σ can be infinite!

Пset P(X)

∀X⊆Σ. P(X)∈FNF

can be normalized if Σ is finite.

24

note

any process

(extended) full normal form

key point :
remove Hiding operators by a function recursively
defined on the process structure.

key point :
normalise ((Пset P(X))↓n) by a function recursively
defined on the depth n.

Induction on the process structure cannot be
applied to a family of processes P(X) (X ⊆Σ)

full sequential form

How to normalise note

P↓n Q↓n＝F (P＼X)↓n (Q＼X)↓n＝F⇒

25Full Sequential form

Full Sequential Form (FSF)

FSF contains only “sequential” operators such as □, !!, and Stop.

The following function Seq: Proc→FSF can be recursively defined
over the process structure.

∀P∈Proc. AF├ P ＝ Seq(P)Theorem 3

This theorem can be proven by structural induction on P.

The sequential process Seq(P) cannot be necessarily automatically
computed because Seq(P) often needs infinite computations, for example

Seq(Пs ● P(s))

requires to compute Seq(P(s)) for all s∈S, where S may be infinite.

note

26

Full Normal form

Пs ● (Пs’ ● Pseq(s,s’))

Пs’ ● (Пs ● Pseq(s,s’))

∈ FSF

∈ FSF

semantically equal but
syntactically different

Syntactic equality?

Full Normal Form (FNF)

FNF is a more specialized form than FSF, for giving the syntactic equality.

∀P,Q∈FNF. P ≡ QP Q＝F ⇔ (syntactic equality)Theorem 4

(similar to the standard FNF)

27
Full Normal form

The following function Norm: FSF→FNF can be recursively defined
on the depth n and the structure over FSF.

∀P∈FSF. AF├ P↓n ＝ Norm(n)(P)Lemma 2

This theorem can be proven by the induction on n and
structural induction on P.

P may be (!! s:S ● P’(s))

∃P∈FSF. ∀P’∈FNF. P ＝F P’Theorem 5

There is no function Norm’ such that ∀P∈FSF. AF├ P ＝ Norm’(P)

FNF does not capture all processes

28
П n ● (P↓n)＝FP

reminder

Extended Full Normal Form

P = П n ● P’(n)
(1) ∀n. P’(n) ∈ FNF and
(2) ∀n. P↓n ＝F P’(n)

Extended Full Normal Form (XFNF)

if

infinite internal choice over fully normalised processes for finite depths

∀P,Q∈XFNF. P ≡ QP Q＝F ⇔ (syntactic equality)

∀P∈Proc. ∃P’∈XFNF. AF├ P ＝ Xnorm(P)

Theorem 6

Theorem 7

Xnorm(P) ≡ П n ● (Norm(n)(Seq(P))

29
Completeness

∀P,Q∈XFNF. P ≡ QP Q＝F ⇔ (syntactic equality)

∀P∈Proc. ∃P’∈XFNF. AF├ P ＝ Xnorm(P)

Theorem 6

Theorem 7

∀P,Q∈Proc.Corollary

AF├ P ＝ Xnorm(P) ≡ Xnorm(Q) ＝ Q

P Q＝F ⇒ AF├ P ＝ Q

Xnorm(P) ≡ П n ● (Norm(n)(Seq(P))

Let P Q, then＝F

30

CSP-Prover

31CSP-Prover

CSP-Prover: a deep encoding of CSP in the generic theorem prover Isabelle

Isabelle

CSP

CSP_F

FNF_F
Verification of infinite state systems

Establishing new theorems on CSP

e.g. EP2 (an electronic payment system)

e.g. Soundness and completeness of AF

fixed point theorems, definitions of syntax and semantics,
CSP-laws, semi-automatic proof tactics, etc.

includes

Y.Isobe and M.Roggenbach, A Generic Theorem Prover of CSP refinment,
TACAS 2005, LNCS 3440, pp.108-123, 2005

References:

http://staff.aist.go.jp/y-isobe/CSP-Prover/CSP-Prover.htmlWeb-site:

1.

Y.Isobe and M.Roggenbach, A complete axiomatic semantics for CSP stable failures
model, CONCUR 2006, LNCS 4237, pp.158-172, 2006

2.

32

Conclusion

33
Summary and Future Work

1. Complete axiomatic semantics of the stable failures model

2. Our CSP dialect is expressive with respect to the stable failures model

4. Correction of two well-known step laws

3. Implementation & Verification of all results in CSP-Prover

Summary

The errors as well as our corrections have been approved by Bill Roscoe, Oxford.

1. Improve proof tactics in CSP-Prover based on the normal forms

2. Develop completeness results for other CSP models

Future work

	A Complete Axiomatic Semanticsfor the CSP Stable-Failures Model
	Overview
	Introduction
	Process algebra
	Operational semantics
	Denotational semantics
	Denotational semantics
	Axiomatic semantics
	Process algebra (CSP)
	Process algebra (CSP)
	Non-determinism
	External choices
	Internal choices
	Unbounded non-determinism
	Standard CSP
	CSPTP
	Relation to ‘Standard CSP’
	Recursive processes
	Axiom system
	Axiom system AF
	Depth restriction
	How to normalise
	How to normalise
	How to normalise
	Full Sequential form
	Full Normal form
	Full Normal form
	Extended Full Normal Form
	Completeness
	CSP-Prover
	CSP-Prover
	Conclusion
	Summary and Future Work

