Contents | A | Abstract | | | | | | |---|-----------------|--|----|--|--|--| | A | Acknowledgments | | | | | | | 1 | Intr | roduction | 1 | | | | | | 1.1 | Chapter Introduction | 1 | | | | | | 1.2 | Background | 1 | | | | | | | | | | | | | | 1.3 | Statement of Research Question | 4 | | | | | | 1.4 | Structure of the Thesis | 4 | | | | | 2 | Lite | erature Review | 8 | | | | | | 2.1 | Chapter Introduction | 8 | | | | | | 2.2 | Evolution of Puzzles | 8 | | | | | | 2.3 | Complexity of Solving Puzzles | 11 | | | | | | | 2.3.1 N-puzzle | 13 | | | | | | | 2.3.2 Minesweeper | 14 | | | | | | 2.4 | Game Refinement Theory | 15 | | | | | | | 2.4.1 Gamified experience for board games and sports games | 17 | | | | | | 2.5 | Motion in Mind Measure | 18 | | | | | | 2.6 | Chapter Summary | 22 | | | | | 3 | Ent | sertaining Analysis of Solving Single-Agent Deterministic Puzzle | 23 | | | | | | 3.1 | Chapter Introduction | 23 | | | | | | 3.2 | Game Testbed: 8-puzzle | 24 | | | | | | 3.3 | Experimental Setup and Its Results | 26 | | | | | | | 3.3.1 A* Algorithm | 26 | | | | | | | 3.3.2 Analysis of the 8-puzzle for AI player | 27 | | | | | | | 3.3.3 Analysis of the 8-puzzle for human player | 31 | | | | | | | 3.3.4 Further analysis of the results | | 33 | |---|---|--|---|--| | | 3.4 | 4 Chapter Conclusion | | 35 | | 4 | Info | formational Dynamic of Single-Age | ent Stochastic Puzzle | 37 | | | 4.1 | Chapter Introduction | | 37 | | | 4.2 | 2 Game Testbed: Minesweeper | | 39 | | | 4.3 | Research Methodology | | 41 | | | | 4.3.1 Building Minesweeper AI | | 41 | | | 4.4 | Experiment Results and Analysis | | 57 | | | | 4.4.1 First action rule and safe first | action rule | 57 | | | | 4.4.2 Safe first action rule and safe | neighborhood rule | 57 | | | | 4.4.3 Guessing strategy and random | n guessing strategy | 58 | | | | 4.4.4 Comparison of methods and s | trategy | 59 | | | 4.5 | 5 Discussion | | 61 | | | 4.6 | 6 Chapter Conclusion | | 62 | | 5 | Fine | nding the Border Between Games | and Puzzles | 64 | | | | manig the Border Between Games | | - | | | 5.1 | Control of the Contro | | | | | | Chapter Introduction | | 64 | | | 5.1 | Chapter Introduction | | 64
65 | | | 5.1 | Chapter Introduction | | 64
65
66 | | | 5.15.25.3 | Chapter Introduction | | 64
65
66
68 | | | 5.15.25.3 | Chapter Introduction | zle-solving | 64
65
66
68
70 | | | 5.15.25.3 | Chapter Introduction | zle-solving | 64
65
66
68
70 | | | 5.15.25.3 | Chapter Introduction | zle-solving | 64
65
66
68
70
70
72 | | | 5.15.25.35.4 | Chapter Introduction | zle-solving | 64
65
66
68
70
70
72
74 | | 6 | 5.15.25.35.45.5 | Chapter Introduction | zle-solving weeper J-puzzle Ginesweeper game: evidence from Minesweeper | 64
65
66
68
70
70
72
74 | | 6 | 5.1
5.2
5.3
5.4
5.5
Con | Chapter Introduction | zle-solving weeper J-puzzle Ginesweeper game: evidence from Minesweeper | 64
65
66
68
70
72
74
79 | | 6 | 5.1
5.2
5.3
5.4
5.5
Con
6.1 | Chapter Introduction | zle-solving | 64
65
66
68
70
70
72
74
79 | | | 5.1
5.2
5.3
5.4
5.5
Con
6.1
6.2 | Chapter Introduction | zle-solving weeper J-puzzle Ginesweeper game: evidence from Minesweeper | 64
65
66
70
70
72
74
79
81
81 | ## List of Figures | 2.1 | An illustration of three possible relationships among P, NP, NPC, and co-NP | 12 | |-----|--|----| | 2.2 | Illustration of law of motion in mind over various mass (m) . The subjective | | | | $motion(p_2)$ is derived from the objective ones (p_1) , where subjective velocity | | | | (v_2) was established. $ec{p_2}$ is derived based on the conservation of E_p | 21 | | 3.1 | An example of 8-puzzle | 25 | | 3.2 | The value of GR , F , p , and E_p , with respect to D in 8-puzzle. The gray | | | | area indicates the peak range of F , p , and E_p and the GR zone | 30 | | 3.3 | The GR value, F , p , and E_p , with respect to the game depth in 8-puzzle | | | | based on human players | 33 | | 4.1 | Two final states of Minesweeper $16 \times 30 99$ mines, the purpose is to find | | | | all hidden mines on the board without opening them. (a) is a losing state | | | | because the player opened on a mine in the game process, (b) is a winning | | | | state while the player revealed all mines on the board | 40 | | 4.2 | The basic information of the cells on the board for minesweeper $(9 \times 9 \mid 10)$, | | | | there are three unsolved blocks on the board: $U_1 = \{(2, 1),, (2, 6), (3, 6),,$ | | | | $(3,8), (4,8), (5,7), (5,8)$, $U_2 = \{(6,3),, (6,6)\}, U_3 = \{(7,1), (7,2)\}.$ | 44 | | 4.3 | An illustration of primary reasoning strategy: The cells with "f" and num- | | | | bers are flagged cell number cells, respectively | 44 | | 4.4 | Frontier division: an example of 9×9 Minesweeper configuration with the | | | | cells marked with blue, orange, and green colors to signify different and | | | | independent frontiers | 47 | | 4.5 | Boolean model of hidden cells: an example of a partial 9×9 Minesweeper | | | | configuration (top part) with each hidden cells were modelled with Boolean | | | | variable $x_i \in \{0, 1\}$, where "0" means c_i is a safe cell, and "1" means c_i is | | | | a mine cell. | 48 | | 4.6 | Binary tree search for free variables: x_1 and x_2 are free variables, blue | | |-----|---|----| | | nodes are leaf nodes, which represents four variable states: $x_1 = 0, x_2 = 0$; | | | | $x_1 = 0, x_2 = 1; x_1 = 1, x_2 = 0; \text{ and } x_1 = 1, x_2 = 1, \dots, \dots$ | 55 | | 4.7 | Safe first action rule. The winning rate of different first opened cells (game | | | | configuration: 8×10 12 mines with "PAR" AI agent strategy on safe first | | | | action rule) | 58 | | 4.8 | Safe neighborhood rule. The winning rate of different first opened cells | | | | (game configuration: 8×10 12 mines with "PAR" AI agent strategy on | | | | safe neighborhood rule) | 59 | | 5.1 | An illustration of move selection model based on skill and chance (adopted | | | | from [1]) | 68 | | 5.2 | Dynamic process of solving rate of 8-puzzle | 71 | | 5.3 | The distribution of the solving rate in the search process when solving | | | | 8-puzzle | 72 | | 5.4 | The distribution of solving rates for the three standard Minesweepers board | | | | sizes | 73 | | 5.5 | Game length and the number of guesses for solving Minesweeper 9×9 | | | | board size various on the number of mines, 2000 runs each mine. (a) is the | | | | scatter diagram of the average game length, and (b) is the scatter diagram | | | | of the guess times for solving Minesweeper 9×9 board size | 75 | | 5.6 | The winning rate (p) of the 9×9 board size Minesweeper is based on the | | | | number of mines $M \in [1,72]$, with 2000 runs per mine. The winning rate | | | | $p=1$ for $M\leq 3$ indicates a deterministic puzzle; $0{<}p\leq 1$ for $M\in [4,39]$ | | | | and $M \in [67,71]$ indicates a stochastic puzzle; otherwise, $p=0$ for $M \in$ | | | | [40, 66] indicates a game | 77 | | 5.7 | The winning rate (p) of the 16×16 board size Minesweeper is based on | | | | the number of mines $M \in [1, 247]$, with 2000 runs per mine. The winning | | | | rate $p = 1$ for $M \leq 13$ indicates a deterministic puzzle; $0 for$ | | | | $M \in [14,84]$ and $M \in [245,246]$ indicates a stochastic puzzle; otherwise, | | | | $p=0$ for $M\in[86,244]$ indicates a game | 78 | ## List of Tables | 2.1 | Analogical link between physics and game (adopted from [1]) | 18 | |-----|---|----| | 3.1 | Game refinement value of 10000 simulated times of 8-puzzle, where n and D stands for the average number of plausible options and steps to solve | | | | respectively | 28 | | 3.2 | Motion in mind measures and GR value over different total steps to solve | | | | (D) for the AI player (A* algorithm) | 29 | | 3.3 | Total steps to solve 8-puzzle games for human players, as well as various | | | | motion in mind measures | 32 | | 3.4 | Analysis of 8-puzzle game as a board game based on GR and motion in | | | | mind measure | 34 | | 3.5 | Analysis of 8-puzzle game as a scoring sports based on GR and motion in | * | | | mind measure | 34 | | 4.1 | Comparison for first action rule and safe first action rule based on different | | | | Minesweeper configuration. | 57 | | 4.2 | Comparison of various methods and strategies from the previous works | | | | against the proposed PAFG strategy performance (winning rate in per- | | | | centage) in solving the Minesweeper. | 60 | | 5.1 | Analysis of <i>n</i> -puzzle game on motion in mind | 70 |