Contents

A	ostra	ct	1
A	ckno	wledgments	iv
1	Intr	oduction	1
	1.1	Chapter Introduction	1
	1.2	Problem Statement and Research Questions	2
	1.3	Research Objectives	4
	1.4	Thesis Structure	5
2	Rel	ated Works	8
	2.1	Chapter Introduction	8
	2.2	Game Refinement Theory and Motion in Mind Concept	8
		2.2.1 Motion in mind model	10
		2.2.2 Jerk and comfort in mind	13
	2.3	Card Games as Testbed in This Study	15
	2.4	Perfect Information Game and Imperfect Information Game	17
		2.4.1 Perfect information game	17
		2.4.2 Imperfect information game	18
	2.5	Reward Frequency in Reinforcement Learning	19
		2.5.1 Influence of reward frequency in gaming	19
	2.6	Chapter Conclusion	20

3	A	ompu	tational Game Experience Analysis via Game Rennement	L .
	The	$_{ m cory}$		22
	3.1	Chapt	er Introduction	22
	3.2	Measu	rement of Play in Games	25
		3.2.1	Player Experiences in Games	25
	3.3	Player	Psychology in Games	27
	3.4	Game	Refinement Theory and Its Development	29
		3.4.1	Game Refinement Theory and Its Development	29
		3.4.2	Jerk and Comfort in Mind	30
	3.5	Gamif	ned Experience From Metaphysical Perspectives	34
		3.5.1	Basketball	36
		3.5.2	Soccer board	38
	3.6	Physic	es and Psychophysiology Processes in Games	40
		3.6.1	Interaction Dynamic	41
		3.6.2	Game Playing Experience and Flow Theory	43
		3.6.3	Conceptual Basis of Motion in Mind	47
		3.6.4	Limitations and Future Works	52
	3.7	Chapt	er Conclusion	53
4	Imp	olicatio	ons of Jerk's On The Measure of Game's Entertainment: Dis-	-
	cove	ering I	Potentially Addictive Games	55
	4.1	Chapt	er Introduction	56
	4.2	Previo	ous work	58
	4.3	Analy	sis of Card Games	61
		4.3.1	Suits irrelevant card games: Wakeng and Doudizhu	62
		4.3.2	Suits relevant card games: Big Two, Winner, and Tien Len	65
	4.4	Propo	sed Computational Models	66
		4.4.1	Game progress model	66

		4.4.2	Motion in mind model	69
		4.4.3	Experimental design	72
	4.5	Comp	utational Results	74
		4.5.1	Result analysis of DouDiZhu	74
		4.5.2	Result analysis of Wakeng	77
		4.5.3	Result analysis of suits-relevant card games	77
		4.5.4	Result analysis of fixed AI levels	79
	4.6	Discus	ssion	81
		4.6.1	Comparison on different game complexities	81
		4.6.2	GR and AD relative to addictive situation	84
	4.7	Chapt	er Conclusion	89
_	m		f C.D. C D Dlancar English with a Day	
5		_	act of Performance Degree on Players: Exploring the Dy	
			Player Engagement and Enjoyment in Game Process	92
	5.1	_	er Introduction	92
	5.2	Relate	ed Works	93
		5.2.1	The meaning of playing performance	94
		5.2.2	The acceleration a_k of different kinds of players	95
		5.2.3	The balance of perfect player and imperfect player from the per-	
			spective of potential energy	95
		5.2.4	Exploring optimal rounds for distinguishing real strength	97
	5.3	Perfor	mance Degree (k) : In-Depth Analysis	100
		5.3.1	The risk rate m and performance degree k	100
		5.3.2	The explanation of the correspondence system of m and the max-	
			imum acceptable performance degree k	100
		5.3.3	Comparison of motion in mind measures based on performance	
			degree k	103

6	Con	clusio	n	126
	5.6	Chapt	er Conclusion	123
			affuence of ratio ϕ (GR/AD)	
			information games	
		5.4.4	The difference between perfect information games and imperfect	
		5.4.3	Reward frequency N and AD	109
		5.4.2	Performance level k and AD	108
		5.4.1	Performance level k and reward frequency N	107
		N, an	d AD	107
	5.4	Dynai	mic Interaction between Performance Level k , Reward Frequency	-

List of Figures

2-1	An illustration of move selection model based on skill and chance $\ \ .$.	10
2-2	Objective and subjective reinforcement when $k=3$	13
2-3	The cross point between the line with velocity v , curve with acceleration	
	a and curve with jerk j . t_1 ; t_2 and t_3 represent the bound for effort,	
	achievement, and discomfort, respectively.	15
3-1	The cross point between the line with velocity v , curve with acceleration	
	a and curve with jerk j . t_1 ; t_2 and t_3 represent the bound for effort,	
	achievement, and discomfort, respectively.	32
3-2	The cross point between the curves of the velocity v , acceleration a , and	
	jerk j , where such a cross point describes the comfortable moment of	
	the basketball game. After the cross point, it can be observed that with	
	enough training and skill, achieving rewards becomes easy. However, the	
	feeling of discomfort will also be higher due to boredom and insufficient	
	challenge	38
3-3	Using board game to play soccer	39
3-4	Using a game tree model to visualize the scoring process	41
3-5	Challenge vs. Skill, illustrating the "flow" region Source: English Wikipedia	
	https://en.wikipedia.org/wiki/File:Challenge_vs_skill.jpg	45
3-6	The description of game process using Δ scores	45

3-7	The description of Flow theory using the game-playing process to as-	
	sociate the context of the expected experience when playing, based on	
	self's (ability) and opponent's (challenge) score	46
3-8	The analysis of motions in mind based on dynamical scores gap \dots	49
3-9	An example of the dynamic interactions and game-playing experience of	
	one game process based on its association with the Flow theory \dots	52
4-1	Objective and subjective reinforcement when $k=3$	72
4-2	The tendency of GR and AD based on the ability level of sophisticated	
	card games	76
4-3	The tendency of GR and AD based on the ability level of classical card	
	games	79
4-4	The tendency of GR and AD value of different complexity game	81
4-5	The relations between GR and AD	85
4-6	The relations between reward frequency (N) and game length (D)	86
4-7	The relations between reward frequency (N) and AD	87
4-8	The crosspoint between fairness (y) , reinforcement (v) , entertainment	
	(GR), and unpredictability (AD)	88
5-1	Game progression velocity as a function of risk rate m	94
5-2	Motion in Mind Measures for $k=3$	96
5-3	Total and each round solved game uncertainty	99
5-4	Possible relation between performance degree and risk rate	101
5-5	The comparison of energy in mind based on the player performance level k	103
5-6	Motion in mind measure compared based on the performance degree \boldsymbol{k}	
	transition from 3 to 2	105
5-7	Comparison of momentum in mind based on the player performance level k	105
5-8	The comparison of subjective momentum in mind based on the player	
	performance level k	106

5-9	Performance Level k and Reward Frequency $N \dots \dots \dots$	108
5-10	The relations between k and AD	109
5-11	The relationship between N and AD in the sports domain $\ldots \ldots$	110
5-12	The relationship between N and AD in the board games domain	111
5-13	The relationship between N and AD in the card games domain $\ \ .$	113
5-14	The relations between N, k and AD	113
5-15	Gamification, Game and Competition	122

xiii

List of Tables

2.1	Measures of game refinement for board games	14
3.1	Measures of game refinement for popular board games, adopted from [1]	32
3.2	Contextual correspondence between game information progress, Newton	
	dynamics, and their link	35
3.3	Contextual link between physics, games, and psychology	36
3.4	Quintessential two-sided time-limited shooting game - basketball (adopted	
	from [2] and basketball reference website*)	37
3.5	Measures of game refinement for soccer game according to [3]	39
3.6	Links between board game to soccer, where D is total shots, B is average	
	feasible options, B_1 is average promising options (i.e., n is assumed as	
	ideal options $n = \sqrt{B_1}$), GR is the informational acceleration, and AD	
	is the informational jerk	39
3.7	The Correspondence between Game Context and Non-Game Context	
	using S (Scores)	44
3.8	Analogical translation between motion in minds, its game-playing impli-	
	cations, and its psycho-physiological context	47
3.9	Dynamical emotions and the corresponding description	51
4.1	Comparison of card games considered in this study	62
4.2	The card types of Wakeng	63
4.3	The card types of Doudizhu	64
	· · · · · · · · · · · · · · · · · · ·	

4.4	Measures of game refinement for board games	69
4.5	The experiment design of Wakeng and Doudizhu	74
4.6	Measures of game refinement for classical DouDiZhu	75
4.7	Results of different levels of AI with different DouDiZhu game settings	75
4.8	The analysis of Wakeng based on different level AI based on the setting	
	of (3, 1, 2)(20,16,16)	77
4.9	The analysis of several card games based on different level AI and setting	78
4.10	Closeness to reasonable zone of GR and AD given by different levels of	
	players of different game complexity	80
4.11	The entertainment aspects of different GR and AD value expression	80
4.13	The comparison of suit-relevant card games based on a standard setting	82
4.12	The comparison of suit irrelevant based on a standard setting	82
4.14	Summary of motions in mind measures of different games	83
4.15	Possible corresponding games	89
4.16	Possible principle of game element	89
5.1	Relations between m and k	102
5.2	The relationship between N and AD in the sport games domain	110
5.3	The relationship between N and AD in the board games domain	111
5.4	The relationship between N and AD in the card games domain \ldots	112
5.5	Correlation between player performance and game characteristics	114
5.6	Comparison between Perfect Information Games and Imperfect Informa-	
	tion Games	116
5.7	Measures of game refinement for board games $[4]$	117
5.8	Comparison of Card Games using GR and AD values [5]	117
5.9	Comparison of Basketball and Soccer using GR and AD values $[6]$	118
5.10	Comparison of Hotels using GR and AD values $[7]$	119
5.11	Comparison of Languages in Duolingo using GR and AD values [8]	120

5.12 Game types compared using ϕ values			121
--	--	--	-----