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Abstract. Network emulation is a technique that allows real-application performance
assessment under controllable and reproducible conditions. We designed and imple-
mented a hardware network emulator on an FPGA-based custom-design PCI plat-
form. Implementation was facilitated by the use of the Handel-C programming lan-
guage, that allows rapid development and fast translation into hardware and has spe-
cific constructs for developing systems with concurrent processes. We report on tests
performed with web-browsing applications.
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Introduction

Network emulation is a technique that makes it possible to assess real-application perfor-
mance under controllable and reproducible conditions. This hybrid technique combines the
advantages of network simulation with those of tests in realnetworks [1]. Most of the exist-
ing network emulators are implemented in software, therefore the quality degradation they
introduce is imprecise and unreproducible. Current hardware [4], [5], [6], [7] and software
[2], [3] approaches exhibit an additional important drawback: they all introduce unrealistic
degradation. The reason is twofold: packets in a flow are treated independently, and quality
degradation effects are not correlated (e.g., packet loss and delay are independent).

We designed and implemented a hardware network emulator on an FPGA-based custom-
design PCI platform [8], [12]. This ensures high-accuracy emulation, as well as high perfor-
mance: the system supports packet rates up to 1.5 million packets per second in each direc-
tion. In addition, our implementation is a new approach to the emulation of quality degrada-
tion in networks, permitting reproducible experiments in realistic network scenarios. In this
approach, network conditions are described in terms of network-element behavior models,
which are aggregated into a single representation that is used effectively for emulation. Im-
plementation was facilitated by the use of the Handel-C programming language [9], that al-
lows rapid development and fast translation into hardware.This article focuses on the basic
principles of our methodology and the architectural choices in the emulator design, including
an assessment of the costs and benefits of the choices we made.

CERN [10] collaborates with Predictable Network Solutions[11] to develop the emula-
tor as a tool permitting the quantitative evaluation of the influence of the experienced network
quality degradation on distributed application performance. We studied several network ap-
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plications used in domestic and specialized environments that would benefit from assurance
of bounds on quality degradation. We report on the behavior of short-lived TCP transfers as
occurring in the case of web-browsing applications. We conclude that our approach is suit-
able to the assessment of applications and approaches to help deliver network-based services
that are predictable, a prerequisite for the support of safety-critical services.

1. Application Performance Assessment

A key issue in application performance assessment is the understanding of the fact that net-
work environments perturb application behavior by delaying and dropping the application
traffic. Networks are therefore degraded environments, andquality degradation in the net-
work is reflected in the performance degradation at application level.

1.1. Principles

There are three steps to take in order to assess application performance: (i) observe the ap-
plication behavior at the end-node level, (ii) accurately measure the quality degradation ex-
perienced by the application traffic and (iii) correlate theabove. A general setup is depicted
in Figure 1.

NETWORK

Figure 1. Observing end-to-end application performance and measuring the quality degradation in the network.

Scientific method requires the use of objective metrics to perform both the network and
application level performance assessments. In case of network quality degradation there is al-
ready a series of widely used metrics [15], [16]: one-way delay [17], one-way packet loss [18]
and throughput. However, when application performance must be determined, each applica-
tion class requires the definition of specific metrics that take into account the application na-
ture. For example, for Voice over IP (VoIP) one can use the Perceptual Evaluation of Speech
Quality score [19]. In case of file transfer, useful metrics are transfer time performance and
goodput [20].

1.2. Our Approach

There is an issue with the setup in Figure 1: one has no controlover the degradation in-
troduced by the network. Other people’s traffic and the loss and delay it induces are what
they are at that moment. Consequently, any measurement onlyreflects the conditions at that
particular time of day.

A much more practical approach is to use a network emulator instead of the real network.
This allows for varying network conditions in a controllable and reproducible manner, hence
effectively exploring application performance in a much wider range of conditions. Figure
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2 shows the experimental setup we used. Quality degradation, denoted by∆Q, is correlated
with the User-Perceived Quality (UPQ) for the application under test.

∆Q Meter

TAP TAP
NETWORK EMULATOR

UPQ Meter

Correlated

Figure 2. Experimental setup.

There are several emulators available at the moment, and we had hands-on experience
with one of them—the results obtained with VoIP and file transfer applications were already
reported in [1].

One of the problems of many network emulators, especially the software versions, is
the lack of accuracy of the degradation they induce. Although it could seem that this is not
essential from the point of view of delay (as long as the erroris within reasonable bounds) it
becomes important when packet loss is concerned. This is because packet loss is the result of
a critical race for resources. The fact whether packet loss occurs or not at a certain moment
depends on the relative timing of the packets. Accurate emulation of these effects is needed
in order to get correct loss rates and distributions, a mandatory feature of an emulator since
they are critical for the performance of most applications.

A hardware implementation, such as ours, ensures a correct behavior regarding timing.
But current hardware emulators have another drawback: theyall introduce unrealistic degra-
dation. This comes from the approach to emulation that is generally taken. Firstly, packets
in a flow are treated independently, which may lead to packet reordering within the same
stream. This has a disastrous effect on TCP application performance, which is optimized for
the normal case when packets arrive in order—we already encountered such problems in real
networks during the performance measurements that were part of feasibility studies related
to the ATLAS1 Event Filter at CERN. Secondly, in current network emulators, quality degra-
dation effects are not correlated (e.g., packet loss and delay are independent). By allowing
the delay and loss distributions to be configured independently, the natural dependence that
exists between these two parameters is destroyed.

Moreover, most of the existing network emulators are network-topology oriented. They
use a node-by-node representation of the emulated network.However, this approach becomes
unfeasible for large-scale networks. We believe that the network quality degradation should
be emulated by using compact models of the network. These models are obtained by aggre-
gating simple network elements into an object with equivalent observable properties. In this
simple way we address the design shortcomings of the existing approaches and also achieve
high accuracy through a hardware implementation.

We identified two basic elements that are the building blocksof any network system: the
wire and thequeue. Thewire represents the transmission media, which can be considered, in
a first approximation, error free. Therefore its main characteristic is the constant propagation

1ATLAS is one of the four experiments being built at CERN on theLarge Hadron Collider accelerator.
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delay. Thequeue is characterized by its length and service rate. It introduces variable delay
and loss. This degradation is introduced by the intra-stream and inter-stream competition for
resources: a packet competes both with other packets from the same traffic flow, as well as
with packets from other streams. Hence the need arises to emulate the inter-stream compe-
tition, for which task we found two techniques. The first one is to use background traffic
generation so as to artificially consume resources (queue space and service time). The second
technique is to use the “server with vacations” paradigm, inwhich the queue server takes
vacations that correspond to servicing the other streams.

Since any network emulator is in fact a system that introduces quality degradation in the
network, from now on we will use the term “quality degrader” to refer to it.

2. Quality Degrader Architecture

Our quality degrader is implemented in hardware, in order toachieve high accuracy and
packet rates up to 1.5 million packets per second. This section presents the hardware platform
and provides details about the core of the emulator.

2.1. Hardware Platform

Our implementation is based on a custom-design PCI platform[8], [12]. This hardware plat-
form uses one Altera Stratix FPGA (EP1S25F780C7) with 25 k logic elements, two Gigabit
Ethernet RJ45 ports and memory (128 MB SDRAM and 1 MB SSRAM). The schematic is
presented in Figure 3:

Figure 3. Schematic of the hardware platform.
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The FPGA manages all the resources and contains the IP2 cores for the two Ethernet
MACs (Medium Access Control) and the SDRAM and PCI controllers. The user-defined
higher-level functionality is implemented on the same FPGA, using the Handel-C program-
ming language. A low-level library that provides primitives for memory and PCI access was
created. The dual-port on-chip RAM blocks provided by the Stratix FPGA are extensively
used to implement queues between concurrent processes. TheFIFO paradigm ensures that
messages/data are processed in order and in the same time decouples through buffering the
two processes that access the two ends of the queue. Of coursedata is lost if the queue fills,
but this should not happen during normal operation and is an indication of a malfunction.

The SDRAM is used to store packet data temporarily. The SSRAMis used to store the
configuration of the emulator. Packet data flows between the two Gigabit Ethernet ports, al-
lowing for the seamless integration of the platform into a network, a prerequisite for a net-
work emulator. To facilitate the deployment, the board can be hosted by ordinary PCs owing
to its standard 3V3 PCI connector. The PCI is used to configurethe application firmware and
to collect statistics.

The whole system is driven at PC level by a Python-based [13] control system. This
allows the creation of automated procedures for performingexperiments in a very simple and
flexible manner. The low-level communication with the hardware platform via PCI is ensured
by a custom Linux kernel module [14].

2.2. Internal Architecture

The architecture of the network emulator is depicted in Figure 4. We used thick arrows to rep-
resent the data paths and thin arrows for the control paths. The architecture is based on mod-
ules, that are blocks of code that have a specific functionality, and which run concurrently.
Each module consists of several parallel processes, and communicates with other modules
and internally by means of channels.

The behavior of the emulator is briefly the following. The traffic is first classified in
order to enable different degradation to be applied to it. Quality degradation is effectively
introduced by means of a system of queues. The length of each queue can be specified.
We chose the approach of background traffic generation, which was implemented as part
of the Degradation Emulation Engine module described below. Packets are then serviced
according to one of the two scheduling algorithms, Strict Priority (SP) or Weighted Round
Robin (WRR). The weights for WRR are user configurable. Next we’ll describe in more
detail each of the modules.

MAC
Receiver

Packet Data
Classifier Emulation

Engine

Degradation

Service
Microflow

Microflow

Preservation
Sequence

MAC
Packet Data
ForwarderDelay

Fixed

SDRAM  Server

Packet  Data  Storage

Figure 4. Quality degrader architecture.

2IP stands here for Intellectual Property.
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The MAC Receiver module provides packet data to the Packet Data Receiver, which
configures and controls it. The Packet Data Receiver checks with the MAC Receiver whether
there was any error on reception, and discards the packet data if this is the case. Note that the
MAC Receiver is an IP macro.

The Packet Data Receiver module manages the reception of complete packets from the
MAC interface. The Packet Data Receiver maintains two queues—one for storing full packet
data and another one for packet descriptors. If one packet iscorrectly received, a descriptor
is placed in the descriptor queue.

The packets are then sent to the Packet Data Storage module, which returns the memory
address where the packet data is stored. The address of the next available memory slot is
determined using a bitmap representation of the memory occupation. Memory is divided in
slots of 2048 bytes; slots are seized when a packet is received and freed when the packet is
either discarded internally or transmitted. The memory address of the current packet and its
descriptor form a packet reference. The packet reference along with information extracted
from the IP packet header are sent to the Classifier module. The following fields are retained:
protocol number, Type Of Service (TOS), source and destination IP addresses.

The Classifier module classifies packets based on the retained fields forwarded by the
Packet Data Receiver. Once packets have been classified, thecorresponding packet reference
and the identifier specifying the degradation queue are sentto the Degradation Emulation
Engine module.

The Degradation Emulation Engine module induces quality degradation through the
management of a system of queues. Upon receiving a packet reference and a degradation
queue identifier, the process sends them to Microflow Sequence Preservation for enqueue-
ing. Under certain conditions the decision to immediately discard the packet can be taken;
in this case no enqueueing takes place. The next queue to be serviced is determined based
on a scheduling algorithm (SP or WRR) and is indicated to Microflow Service. An essential
feature of this module is the background traffic generator associated with each queue. These
generators can be independently started/stopped and configured to transmit user-defined arti-
ficial traffic patterns. The patterns are uploaded onto the board in the on-chip RAM. So far we
used CBR (Constant Bit Rate) and Poisson distributions for the inter-packet arrival time of
the background traffic packets. The Degradation Emulation Engine module also implements
the transmission-rate limiting mechanism.

The Microflow Sequence Preservation module stores and manages in a FIFO manner the
packet references received from the Degradation Emulationengine, thus preventing packet
reordering. The Microflow Sequence Preservation module uses eight queues, out of which
one is assigned to the unclassified traffic. The size of each queue can be configured.

The Microflow Service module manages the retrieval of packetreferences from Mi-
croflow Sequence Preservation based on queue identifiers received from Degradation Emu-
lation. The packet reference is subsequently sent to the Fixed Delay module.

The Fixed Delay module introduces a constant delay by enqueueing the descriptors in a
queue. The constant delay represents the propagation delayand it is user configurable.

The Packet Data Forwarder module manages the transmission of the packets to the MAC
interface. It maintains two queues—one for full packet dataand another one for packet de-
scriptors. When a packet reference is received, the corresponding packet is retrieved from
the Packet Data Storage. Once a packet is transmitted, a “free reference” message is sent to
Packet Data Storage.

The MAC Forwarder module receives packet data from the Packet Data Forwarder in
chunks of 32-bit words. The MAC Forwarder is configured and controlled by the Packet Data
Forwarder. As the MAC Receiver, the MAC Forwarder is an IP macro.
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2.3. Implementation Philosophy

For a design of this complexity the obvious description language of choice would be VHDL;
however the learning curve for non-hardware specialists was estimated as being too steep.
We chose instead Handel-C, a language whose close affinity toC made it readily accessible
to software engineers while at the same time offering constructs that allowed us to employ
the natural parallelism of the hardware. Handel-C had been employed before in networking
applications at CERN [21] but the magnitude and complexity of this design would present a
real challenge.

The most obvious construct of use is thepar, which allows for the parallel execution
of statements or complete processes. In practice every module shown in Figure 4 runs as
a process under a top-levelpar. There are limits withpar, however, as was found when
trying to parallelize the packet classifier. If the different classification rules were operating
in parallel then each process would attempt to access the data at the same time, meaning
significant FPGA routing problems and increased delay. In addition this solution doesn’t
scale to a large number of rules. Replicating the data to provide each process with its own
copy was equally time consuming, so finally it proved better to execute classification rules
sequentially.

Channel objects allow data to be communicated between processes; the transfer occurs
only when both processes are ready and forces the synchronization of parallel processes.
Their existence proved especially useful for several reasons. During the development phase,
we could independently debug and validate individual modules comfortable in the knowledge
that whatever logical or timing changes happened as a result, the module would still fit back
into the full design and communicate with its adjacent modules as before. If, in the worst
case of a design error, there is some channel mismatch then the whole system freezes and
allows the debugger to retrieve state and correct the error.This independent development is
especially powerful when one considers that for the full design a compile, place and route
cycle is at least half an hour.

Channels also resolve the problem of passing data across clock domain boundaries. The
design can’t avoid different domains since the PCI interface requires 33 MHz and the MAC
interface requires 25 MHz. However having the facility to easily cross clock domains meant
that we could choose something close to the optimum frequency for several different tasks.
For example, the SDRAM server runs at 83.3 MHz and the main core at 62.5 MHz. Without
this option we would not have been able to meet the design requirements of the project. Again
however there are limits. The channel is a complex structurewith up to a four-cycle overhead
which becomes the limit for very high speed transfers. For the fastest transfer logic we needed
to use an internal hardware feature, the dual-port RAM, as shared memory between two clock
domains. The shared memory acts as a mailbox while the requests for transfer are still sent
over channels. This came at the cost of having to ensure the synchronization with our own
logic, an error-prone process that cost considerable debugging time.

Although ordered and synchronous operations have clear advantages, there are cases
where data has to be retrieved as fast as possible—such as theingress from the MAC inter-
faces which must be cleared irrespective of the state of the modules that will consume the
data. We used queues in this case to accept asynchronously the incoming data.

The use of multiple channels in each module lead to yet another problem: the arbitration
of the access to all these channels. Handel-C provides a solution by means of theprialt
instruction. This instruction allows the channel that is first ready to perform a transfer and it
even works between different clock domains. This instruction was used, for example, in the
Packet Data Storage module, to which “free reference” messages are addressed from more
sources (from Degradation Emulation Engine on packet discard, and from the Packet Data
Forwarder module on packet transmission).
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In retrospect the choice of language for this project was fully justified. It allowed for
a formal approach to the design process and we found that witheach iteration we moved
further from the shared memory architecture and closer to channel based ones that facilitated
both debugging and execution. As we became more competent with using channels and CSP,
the code we wrote became smaller and simpler. This leads to the fact that maintenance and
modifications are also easier.

3. Experimental Results

Using the network emulator we assessed the performance of several applications, such as
web browsing, file transfer, VoIP, and video streaming. Web browsing is an HTTP-based ap-
plication that is characterized by short-lived TCP transfers. The performance of such an ap-
plication strongly depends on packet loss, hence we chose topresent the results we obtained
using it. The traffic of interest (HTTP) competes with the background traffic to occupy queue
space—which induces loss—and for being serviced—which induces delay. We compare two
cases, when the background traffic source has a CBR or a Poisson pattern. For all the tests the
emulator was configured to introduce a fixed delay of 12.5 ms (equivalent to 25 ms RTT3).
The available bandwidth was limited to 10 Mb/s and the size ofthe queue was 128 packets.

We used the setup presented in Figure 2. The end PCs run Linux with kernel 2.4.21,
the HTTP server was Apache 2.0 (httpd-2.0.46) and the clientwaswget (wget-1.8.2), a non-
interactive network retriever that allows for the automation of tests. The interconnect em-
ployed was Fast Ethernet, because the taps we currently use work only at 100 Mb/s. The
emulator is however able to run at 1 Gb/s as well.

For the Apache server all the parameters had default values,including theTimeout4 of
300s.KeepAlive5 was “on” and “off” in turn. When “off”, a new TCP connection isopened
and closed for each file transfer. This represents the most inefficient case. When “on”, the
same TCP connection is used for up toMaxKeepAliveRequests = 100 transfers separated by
no more thanKeepAliveTimeout = 15 s.

We chose a representative web-page structure to use in our tests, that contains both im-
ages and text. The site consists of 499 files, with a total sizeof 1.6 MB. The average file size
is approximately 3 kB, close to the average value of file sizeson the Web [22]. The results in
Figures 5 and 6 show the dependency of site download durationon the offered background-
traffic load, forKeepAlive “off” and “on”, respectively. The site download duration isa mea-
sure of the user-perceived quality for web-browsing applications. The reference value is that
obtained when the application has an exclusive use of the network (i.e., when the background
traffic generator is disabled). The offered background-traffic load varies from 0 to 100%,
being a measure of the congestion induced by the emulator.

Note in Figure 5 that CBR background traffic has almost no influence on the perfor-
mance, since this case is equivalent to a constant diminution of the bandwidth available for
the application. A constant amount of available bandwidth leads to a steady performance
of TCP. Since web browsing only implies transfers of relatively small amount of data, the
available bandwidth can be low without a significant impact on performance. When the back-
ground traffic load approaches 100%, the available bandwidth becomes insufficient. Subse-
quently there is a rapid increase of the download duration, followed by denial of service and
leading to complete application failure.

3Round Trip Time, the time needed for a packet to travel back and forth between two end nodes on a particular
network connection.

4Timeout is the number of seconds before the server receives and sendstime out.
5KeepAlive indicates whether or not to allow persistent connections (i.e., with more than one request per

connection).
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When the background traffic is Poisson (and therefore more realistic) noticeable perfor-
mance degradation starts occurring from loads of 60%. At loads larger than 80% the degra-
dation becomes significant and reaches values with more thanone order of magnitude higher
compared to the CBR case. The intrinsic burstiness of the Poisson traffic determines the larger
deviations of the results.

One can observe in Figure 6 an improvement of the worst-case behavior of one order
of magnitude whenKeepAlive is “on”, due to the reutilization of the same TCP connection
for multiple transfers. This reduces the probability of losing connection establishment and
termination packets; such loss is the main culprit for performance drop for TCP-based appli-
cations.
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Figure 5. Site download duration versus offered background-traffic load (KeepAlive “off”).
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4. Conclusions

In this paper we present our approach to the emulation of quality degradation in networks. We
implemented our concepts using an FPGA-based hardware platform. This proved to be the
most appropriate solution for network emulation considering the requirements for accuracy,
reproducibility and high-speed operation. The implementation was made easier by the use of
Handel-C, a programming language that is rich in constructsthat allow the development of
concurrent process systems. We used in particular very intensively channels to synchronize
the parallel processes in our implementation.

The core of the emulator is a system of queues which guarantees a realistic dependency
between packet loss and delay. We identified two strategies for emulating the effects of other
traffic flows on the traffic of interest: background traffic generation and the “server with
vacations” paradigm. We have already implemented the first approach and we are currently
comparing the two strategies. This will be useful for the next generation emulators, able to
emulate large-scale networks through the aggregation of network element models.

We used this system for application performance assessment. We report on web brows-
ing, characterized by many short-lived HTTP transfers. We determined experimentally the
dependence between site download duration and the offered load of the background traffic,
i.e., between user perceived quality and the congestion level in the network.

As mentioned before, we already run test with various other applications, such as VoIP
(Voice over IP) and video streaming using a software networkemulator. Our future plans is
to perform similar tests using the hardware network emulator we developed in order to obtain
more accurate results and emphasize the differences between the two emulation approaches.

In addition the emulator will be used to perform tests in connection with the design of
the ATLAS Data Collection system at CERN. Preliminary testshave already taken place and
we will report on them in a future paper.
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