Communicating Process Architectures 2005 385
Jan Broenink, Herman Roebbers, Johan Sunter, Peter Welch, and David Wbod (Eds.)
|OS Press, 2005

Assessing Application Performancein
Degraded Network Environments:
an FPGA-based Approach

Mihai IVANOVICI ®!, Razvan BEURAN and Neil DAVIES®

2 CERN, Geneva, Switzerland
b Predictable Network Solutions, Bristol, UK

Abstract. Network emulation is a technique that allows real-appitcaperformance
assessment under controllable and reproducible conditiMe designed and imple-
mented a hardware network emulator on an FPGA-based cudtsign PCI plat-
form. Implementation was facilitated by the use of the H&@@rogramming lan-
guage, that allows rapid development and fast translatitmhardware and has spe-
cific constructs for developing systems with concurrentpsses. We report on tests
performed with web-browsing applications.

Keywor ds. Application performance assessment, network emulatiB@A, hardware
implementation, Handel-C

I ntroduction

Network emulation is a technique that makes it possible sess real-application perfor-
mance under controllable and reproducible conditionss Tilgbrid technique combines the
advantages of network simulation with those of tests in mealvorks [1]. Most of the exist-
ing network emulators are implemented in software, theeetoe quality degradation they
introduce is imprecise and unreproducible. Current hare4, [5], [6], [7] and software
[2], [3] approaches exhibit an additional important draakahey all introduce unrealistic
degradation. The reason is twofold: packets in a flow areddemdependently, and quality
degradation effects are not correlated (e.g., packet lndslalay are independent).

We designed and implemented a hardware network emulatar BR@A-based custom-
design PCI platform [8], [12]. This ensures high-accuratyation, as well as high perfor-
mance: the system supports packet rates up to 1.5 milliokepgper second in each direc-
tion. In addition, our implementation is a new approach dmulation of quality degrada-
tion in networks, permitting reproducible experimentsealistic network scenarios. In this
approach, network conditions are described in terms of ordt@lement behavior models,
which are aggregated into a single representation thaied efectively for emulation. Im-
plementation was facilitated by the use of the Handel-C nogning language [9], that al-
lows rapid development and fast translation into hardwaheés article focuses on the basic
principles of our methodology and the architectural cheioghe emulator design, including
an assessment of the costs and benefits of the choices we made.

CERN [10] collaborates with Predictable Network Soluti¢hk] to develop the emula-
tor as a tool permitting the quantitative evaluation of tiftience of the experienced network
quality degradation on distributed application perforee@ne studied several network ap-

!Corresponding AuthoMihai Ivanovici, CERN, 1211 Geneva 23, Switzerland. Tel.: +41 22 767 39 08; Fax:
+41 22 767 39 00; E-maiMihail.Ivanovici@cern. ch.

386 M. lvanovici et al. / Assessing Application Performance: an FPGA-based Approach

plications used in domestic and specialized environméiatisitould benefit from assurance
of bounds on quality degradation. We report on the behavishort-lived TCP transfers as
occurring in the case of web-browsing applications. We katethat our approach is suit-
able to the assessment of applications and approachegtdéisler network-based services
that are predictable, a prerequisite for the support otgafiétical services.

1. Application Perfor mance Assessment

A key issue in application performance assessment is therstahding of the fact that net-
work environments perturb application behavior by delgyamd dropping the application
traffic. Networks are therefore degraded environments,caradity degradation in the net-
work is reflected in the performance degradation at apjdicdevel.

1.1. Principles

There are three steps to take in order to assess applicaréormance: (i) observe the ap-
plication behavior at the end-node level, (ii) accuratelyasure the quality degradation ex-
perienced by the application traffic and (iii) correlate #t@ve. A general setup is depicted
in Figure 1.

]]

X
X

Figurel. Observing end-to-end application performance and meagtire quality degradation in the network.

Scientific method requires the use of objective metrics téop@ both the network and
application level performance assessments. In case obrietwality degradation there is al-
ready a series of widely used metrics [15], [16]: one-wayd€l 7], one-way packet loss [18]
and throughput. However, when application performancet ineisletermined, each applica-
tion class requires the definition of specific metrics thi¢t@to account the application na-
ture. For example, for Voice over IP (VoIP) one can use thedfgual Evaluation of Speech
Quality score [19]. In case of file transfer, useful metrios mansfer time performance and
goodput [20].

1.2. Our Approach

There is an issue with the setup in Figure 1: one has no coover the degradation in-
troduced by the network. Other people’s traffic and the logs @elay it induces are what
they are at that moment. Consequently, any measurementeftdgts the conditions at that
particular time of day.

A much more practical approach is to use a network emulastead of the real network.
This allows for varying network conditions in a controllatzind reproducible manner, hence
effectively exploring application performance in a muclderi range of conditions. Figure

M. lvanovici et al. / Assessing Application Performance: an FPGA-based Approach 387

2 shows the experimental setup we used. Quality degradatemoted byAQ, is correlated
with the User-Perceived Quality (UPQ) for the applicationler test.

l TAP
NETWORK EMULATOR

AQ Meter

Correlated

UPQ Meter

Figure 2. Experimental setup.

There are several emulators available at the moment, ancadédnds-on experience
with one of them—the results obtained with VoIP and file tfanapplications were already
reported in [1].

One of the problems of many network emulators, especialtystbftware versions, is
the lack of accuracy of the degradation they induce. Altloigould seem that this is not
essential from the point of view of delay (as long as the egarithin reasonable bounds) it
becomes important when packet loss is concerned. This @ise@acket loss is the result of
a critical race for resources. The fact whether packet losarg or not at a certain moment
depends on the relative timing of the packets. Accurate ationl of these effects is needed
in order to get correct loss rates and distributions, a mang#eature of an emulator since
they are critical for the performance of most applications.

A hardware implementation, such as ours, ensures a corbal/or regarding timing.
But current hardware emulators have another drawback:atayroduce unrealistic degra-
dation. This comes from the approach to emulation that i®ggly taken. Firstly, packets
in a flow are treated independently, which may lead to pack@tdering within the same
stream. This has a disastrous effect on TCP applicatiompednce, which is optimized for
the normal case when packets arrive in order—we alreadyueeced such problems in real
networks during the performance measurements that wet®pgasibility studies related
to the ATLAS! Event Filter at CERN. Secondly, in current network emulstquality degra-
dation effects are not correlated (e.g., packet loss araydeke independent). By allowing
the delay and loss distributions to be configured indepahgehe natural dependence that
exists between these two parameters is destroyed.

Moreover, most of the existing network emulators are netwopology oriented. They
use a node-by-node representation of the emulated netiWovkever, this approach becomes
unfeasible for large-scale networks. We believe that thevork quality degradation should
be emulated by using compact models of the network. Theselnade obtained by aggre-
gating simple network elements into an object with equivatdbservable properties. In this
simple way we address the design shortcomings of the egiapproaches and also achieve
high accuracy through a hardware implementation.

We identified two basic elements that are the building blafleny network system: the
wire and thequeue. Thewire represents the transmission media, which can be considered
a first approximation, error free. Therefore its main chemastic is the constant propagation

LATLAS is one of the four experiments being built at CERN onltlaege Hadron Collider accelerator.

388 M. lvanovici et al. / Assessing Application Performance: an FPGA-based Approach

delay. Thequeue is characterized by its length and service rate. It intreduariable delay
and loss. This degradation is introduced by the intra-stread inter-stream competition for
resources: a packet competes both with other packets frersaime traffic flow, as well as
with packets from other streams. Hence the need arises t@a@nibe inter-stream compe-
tition, for which task we found two techniques. The first oada use background traffic
generation so as to artificially consume resources (queagesgnd service time). The second
technique is to use the “server with vacations” paradignwimch the queue server takes
vacations that correspond to servicing the other streams.

Since any network emulator is in fact a system that introdagslity degradation in the
network, from now on we will use the term “quality degradey’réfer to it.

2. Quality Degrader Architecture

Our quality degrader is implemented in hardware, in ordeadbieve high accuracy and
packet rates up to 1.5 million packets per second. Thismeptiesents the hardware platform
and provides details about the core of the emulator.

2.1. Hardware Platform

Our implementation is based on a custom-design PCI platf8fnfil 2]. This hardware plat-
form uses one Altera Stratix FPGA (EP1S25F780C7) with 25giclelements, two Gigabit
Ethernet RJ45 ports and memory (128 MB SDRAM and 1 MB SSRAME $chematic is
presented in Figure 3:

[1 1 I I I [= 4 1 1 I 2 I L1
Clock GU
X RJ45 QZ 25 MHz
nnectors Page:d
+
] Magnetios Clk 25 MHz i
+*
LED's LED @
GPS 1Hz! 10 MHz (2}
Rdy4Do, Do(2+ 27) Clk 125 MHz (6}
Ck 125 MHz
m GEO %{) MemBank 0 B
Cortrol | Aocess (3201 :
o Ky 2 x SDRAM 256Mb (16M x 16, 7.5 ns
(=220 oy geE1111 —r 28 FPGA loDaa (2+38 .| 1xSSRAM 4Mb (128K x 32, 7.5 ns)
Stratix .1
Pogun EP1525F7870CT 4
g M—b MemBank 1
L pddess 0922 1) 5 « SDRAM 256Mb (16M x 16, 7.5ns) H
i Conf.Flash |, oOwsm+3 | 1xSSRAM 4Mb (128K x32, 7.5 ns)
EPCSQC100 o
GE1 b
(=SB _n oy 9E 1411
PH-SEHY | _baian p—Comi® | JTAG & Test
i 2zl | ¢ tors
H Pan3 Pages 4-8 - I
=I# B8 Bl
£ - 8 i 5 l<
g al> 0
PS Regulator s
12,1525V /3A -
: 64-bit/66 MHz, 3.3V Page:3
M 1 1 I I I 5 L | 4 1 Y I

Figure 3. Schematic of the hardware platform.

M. lvanovici et al. / Assessing Application Performance: an FPGA-based Approach 389

The FPGA manages all the resources and contains thealfes for the two Ethernet
MACs (Medium Access Control) and the SDRAM and PCI contrsllélhe user-defined
higher-level functionality is implemented on the same FRGging the Handel-C program-
ming language. A low-level library that provides primits/Bor memory and PCIl access was
created. The dual-port on-chip RAM blocks provided by thetst FPGA are extensively
used to implement queues between concurrent processesIF@eparadigm ensures that
messages/data are processed in order and in the same timgtscthrough buffering the
two processes that access the two ends of the queue. Of dateses lost if the queue fills,
but this should not happen during normal operation and isdication of a malfunction.

The SDRAM is used to store packet data temporarily. The SSRAbMed to store the
configuration of the emulator. Packet data flows betweenvibe3igabit Ethernet ports, al-
lowing for the seamless integration of the platform into anwek, a prerequisite for a net-
work emulator. To facilitate the deployment, the board cambsted by ordinary PCs owing
to its standard 3V3 PCI connector. The PCl is used to confidnearapplication firmware and
to collect statistics.

The whole system is driven at PC level by a Python-based [@B{ral system. This
allows the creation of automated procedures for perforrakpgriments in a very simple and
flexible manner. The low-level communication with the haagevplatform via PClI is ensured
by a custom Linux kernel module [14].

2.2. Internal Architecture

The architecture of the network emulator is depicted in Fegu We used thick arrows to rep-
resent the data paths and thin arrows for the control patiesafchitecture is based on mod-
ules, that are blocks of code that have a specific functignalnd which run concurrently.
Each module consists of several parallel processes, anthaoioates with other modules
and internally by means of channels.

The behavior of the emulator is briefly the following. Theffirais first classified in
order to enable different degradation to be applied to ital@udegradation is effectively
introduced by means of a system of queues. The length of eaeheqcan be specified.
We chose the approach of background traffic generation,hwmvies implemented as part
of the Degradation Emulation Engine module described heRagckets are then serviced
according to one of the two scheduling algorithms, Strievbfty (SP) or Weighted Round
Robin (WRR). The weights for WRR are user configurable. Negtlvdescribe in more
detail each of the modules.

[SDRAM Server]

==

N Packet Data Storage

Microflow
Sequence
Preservation

Degradation
Emulation
Engine

Packet Data
Receiver

Classifier

Microflow Fixed Packet Data
Service Delay Forwarder

Figured4. Quality degrader architecture.

2|P stands here for Intellectual Property.

390 M. lvanovici et al. / Assessing Application Performance: an FPGA-based Approach

The MAC Receiver module provides packet data to the Pack& Raceiver, which
configures and controls it. The Packet Data Receiver cheithglve MAC Receiver whether
there was any error on reception, and discards the paclkeifdhis is the case. Note that the
MAC Receiver is an IP macro.

The Packet Data Receiver module manages the reception gflemnpackets from the
MAC interface. The Packet Data Receiver maintains two gstetane for storing full packet
data and another one for packet descriptors. If one packerisctly received, a descriptor
is placed in the descriptor queue.

The packets are then sent to the Packet Data Storage modhidd, igturns the memory
address where the packet data is stored. The address ofxhavadable memory slot is
determined using a bitmap representation of the memorypatmn. Memory is divided in
slots of 2048 bytes; slots are seized when a packet is retaive freed when the packet is
either discarded internally or transmitted. The memoryesisiof the current packet and its
descriptor form a packet reference. The packet referermegakith information extracted
from the IP packet header are sent to the Classifier moduéetdlfowing fields are retained:
protocol number, Type Of Service (TOS), source and destin#® addresses.

The Classifier module classifies packets based on the rdtéelds forwarded by the
Packet Data Receiver. Once packets have been classifieshriiesponding packet reference
and the identifier specifying the degradation queue aretsetiite Degradation Emulation
Engine module.

The Degradation Emulation Engine module induces qualigratation through the
management of a system of queues. Upon receiving a paclesemet and a degradation
queue identifier, the process sends them to Microflow SeguBneservation for enqueue-
ing. Under certain conditions the decision to immediatescdrd the packet can be taken;
in this case no enqueueing takes place. The next queue ta\beeskis determined based
on a scheduling algorithm (SP or WRR) and is indicated to dflow Service. An essential
feature of this module is the background traffic generatso@ated with each queue. These
generators can be independently started/stopped and ewaditp transmit user-defined arti-
ficial traffic patterns. The patterns are uploaded onto tlaedim the on-chip RAM. So far we
used CBR (Constant Bit Rate) and Poisson distributionsHeriiter-packet arrival time of
the background traffic packets. The Degradation Emulatiogiie module also implements
the transmission-rate limiting mechanism.

The Microflow Sequence Preservation module stores and reamag@ FIFO manner the
packet references received from the Degradation Emulatigmne, thus preventing packet
reordering. The Microflow Sequence Preservation moduls agght queues, out of which
one is assigned to the unclassified traffic. The size of eaebhejoan be configured.

The Microflow Service module manages the retrieval of pac&tdrences from Mi-
croflow Sequence Preservation based on queue identifieiv@eddrom Degradation Emu-
lation. The packet reference is subsequently sent to thedHdelay module.

The Fixed Delay module introduces a constant delay by erejuguhe descriptors in a
queue. The constant delay represents the propagationatedayis user configurable.

The Packet Data Forwarder module manages the transmiddiummackets to the MAC
interface. It maintains two queues—one for full packet datd another one for packet de-
scriptors. When a packet reference is received, the canespg packet is retrieved from
the Packet Data Storage. Once a packet is transmitted,aréference” message is sent to
Packet Data Storage.

The MAC Forwarder module receives packet data from the Rda&ta Forwarder in
chunks of 32-bit words. The MAC Forwarder is configured anctiadled by the Packet Data
Forwarder. As the MAC Receiver, the MAC Forwarder is an IP rac

M. lvanovici et al. / Assessing Application Performance: an FPGA-based Approach 391
2.3. Implementation Philosophy

For a design of this complexity the obvious description laage of choice would be VHDL,;
however the learning curve for non-hardware specialists @gimated as being too steep.
We chose instead Handel-C, a language whose close affin@ynade it readily accessible
to software engineers while at the same time offering cantrthat allowed us to employ
the natural parallelism of the hardware. Handel-C had begpl@/ed before in networking
applications at CERN [21] but the magnitude and complexityis design would present a
real challenge.

The most obvious construct of use is ther, which allows for the parallel execution
of statements or complete processes. In practice every lmastiown in Figure 4 runs as
a process under a top-levedr. There are limits withpar, however, as was found when
trying to parallelize the packet classifier. If the differetassification rules were operating
in parallel then each process would attempt to access tleeaddhe same time, meaning
significant FPGA routing problems and increased delay. lditech this solution doesn'’t
scale to a large number of rules. Replicating the data toigeoach process with its own
copy was equally time consuming, so finally it proved betteexecute classification rules
sequentially.

Channel objects allow data to be communicated between ggesgthe transfer occurs
only when both processes are ready and forces the synchtimmzf parallel processes.
Their existence proved especially useful for several nessburing the development phase,
we could independently debug and validate individual meslabmfortable in the knowledge
that whatever logical or timing changes happened as a réiseltnodule would still fit back
into the full design and communicate with its adjacent meduwds before. If, in the worst
case of a design error, there is some channel mismatch teenftble system freezes and
allows the debugger to retrieve state and correct the érhis.independent development is
especially powerful when one considers that for the fulligies compile, place and route
cycle is at least half an hour.

Channels also resolve the problem of passing data acradsadmnain boundaries. The
design can't avoid different domains since the PCI intexfeeqjuires 33 MHz and the MAC
interface requires 25 MHz. However having the facility tgigacross clock domains meant
that we could choose something close to the optimum frequimeseveral different tasks.
For example, the SDRAM server runs at 83.3 MHz and the maia a062.5 MHz. Without
this option we would not have been able to meet the designrezgants of the project. Again
however there are limits. The channel is a complex struetitfeup to a four-cycle overhead
which becomes the limit for very high speed transfers. Fefaitest transfer logic we needed
to use an internal hardware feature, the dual-port RAM, asesshmemory between two clock
domains. The shared memory acts as a mailbox while the regioegransfer are still sent
over channels. This came at the cost of having to ensure tiEhsynization with our own
logic, an error-prone process that cost considerable dghggme.

Although ordered and synchronous operations have cleansayes, there are cases
where data has to be retrieved as fast as possible—such exgthss from the MAC inter-
faces which must be cleared irrespective of the state of theules that will consume the
data. We used queues in this case to accept asynchronoeshctming data.

The use of multiple channels in each module lead to yet anptioblem: the arbitration
of the access to all these channels. Handel-C provides é@oly means of therialt
instruction. This instruction allows the channel that istfready to perform a transfer and it
even works between different clock domains. This instarctvas used, for example, in the
Packet Data Storage module, to which “free reference” ngessare addressed from more
sources (from Degradation Emulation Engine on packet dis@nd from the Packet Data
Forwarder module on packet transmission).

392 M. lvanovici et al. / Assessing Application Performance: an FPGA-based Approach

In retrospect the choice of language for this project waly fuistified. It allowed for
a formal approach to the design process and we found thateaith iteration we moved
further from the shared memory architecture and closeraomcél based ones that facilitated
both debugging and execution. As we became more competgnuiging channels and CSP,
the code we wrote became smaller and simpler. This leadsttath that maintenance and
modifications are also easier.

3. Experimental Results

Using the network emulator we assessed the performancevefasepplications, such as
web browsing, file transfer, VoIP, and video streaming. Wedwising is an HTTP-based ap-
plication that is characterized by short-lived TCP trarsf&he performance of such an ap-
plication strongly depends on packet loss, hence we chgsesent the results we obtained
using it. The traffic of interest (HTTP) competes with thekmround traffic to occupy queue
space—which induces loss—and for being serviced—whichded delay. We compare two
cases, when the background traffic source has a CBR or a Rgatern. For all the tests the
emulator was configured to introduce a fixed delay of 12.5 muiyalent to 25 ms RTY).
The available bandwidth was limited to 10 Mb/s and the sizhefqueue was 128 packets.

We used the setup presented in Figure 2. The end PCs run Liittokernel 2.4.21,
the HTTP server was Apache 2.0 (httpd-2.0.46) and the alestiget (wget-1.8.2), a non-
interactive network retriever that allows for the autoroatof tests. The interconnect em-
ployed was Fast Ethernet, because the taps we currently aideonly at 100 Mb/s. The
emulator is however able to run at 1 Gb/s as well.

For the Apache server all the parameters had default vaheagding theTimeout* of
300s.KeepAlive® was “on” and “off” in turn. When “off”, a new TCP connection épened
and closed for each file transfer. This represents the me#ftaient case. When “on”, the
same TCP connection is used for upMaxKeepAliveRequests = 100 transfers separated by
no more tharKeepAliveTimeout = 15 s.

We chose a representative web-page structure to use ingisy tieat contains both im-
ages and text. The site consists of 499 files, with a totalsfide6 MB. The average file size
is approximately 3 kB, close to the average value of file simethe Web [22]. The results in
Figures 5 and 6 show the dependency of site download duratighe offered background-
traffic load, forKeepAlive “off” and “on”, respectively. The site download duratioraisnea-
sure of the user-perceived quality for web-browsing agpions. The reference value is that
obtained when the application has an exclusive use of thveonke(i.e., when the background
traffic generator is disabled). The offered backgrountfitréoad varies from 0 to 100%,
being a measure of the congestion induced by the emulator.

Note in Figure 5 that CBR background traffic has almost no enfbe on the perfor-
mance, since this case is equivalent to a constant dimmuofithe bandwidth available for
the application. A constant amount of available bandwiétdk to a steady performance
of TCP. Since web browsing only implies transfers of rekdiivsmall amount of data, the
available bandwidth can be low without a significant impacperformance. When the back-
ground traffic load approaches 100%, the available bantividdtomes insufficient. Subse-
quently there is a rapid increase of the download durataigwed by denial of service and
leading to complete application failure.

3Round Trip Time, the time needed for a packet to travel badkarth between two end nodes on a particular
network connection.

4Timeout is the number of seconds before the server receives and tseredsut.

SKeepAlive indicates whether or not to allow persistent connectiores, (with more than one request per
connection).

M. lvanovici et al. / Assessing Application Performance: an FPGA-based Approach 393

When the background traffic is Poisson (and therefore maidestie) noticeable perfor-
mance degradation starts occurring from loads of 60%. Atddarger than 80% the degra-
dation becomes significant and reaches values with moreoti@order of magnitude higher
compared to the CBR case. The intrinsic burstiness of thesBoitraffic determines the larger
deviations of the results.

One can observe in Figure 6 an improvement of the worst-cesaevior of one order
of magnitude wherKeepAlive is “on”, due to the reutilization of the same TCP connection
for multiple transfers. This reduces the probability ofit@gsconnection establishment and
termination packets; such loss is the main culprit for penfance drop for TCP-based appli-
cations.

2000

—e— CBR background traffic
= * = Poisson background traffic

1500

1
1
1
1000 "
]

If
500 /

M
—020 0 20 40 60 80 100 120
Offered background-traffic load [%]

Site download duration [s]

Figure5. Site download duration versus offered background-tradtcl| (KeepAlive “off”).

140¢

—e— CBR background traffic
1201 = * — Poisson background traffic

100t
80+ ;

60" : : {
40} A

Site download duration [s]

201

o i i i i i i i
=20 0 20 40 60 80 100 120
Offered background-traffic load [%]

Figure6. Site download duration versus offered background-tradtcl|KeepAlive “on”).

394 M. lvanovici et al. / Assessing Application Performance: an FPGA-based Approach

4. Conclusions

In this paper we present our approach to the emulation oftgulegradation in networks. We
implemented our concepts using an FPGA-based hardwarermpfatThis proved to be the
most appropriate solution for network emulation consiuigthe requirements for accuracy,
reproducibility and high-speed operation. The implemigotavas made easier by the use of
Handel-C, a programming language that is rich in constrilesallow the development of
concurrent process systems. We used in particular vergsiviely channels to synchronize
the parallel processes in our implementation.

The core of the emulator is a system of queues which guaraatesalistic dependency
between packet loss and delay. We identified two strategremnfiulating the effects of other
traffic flows on the traffic of interest: background traffic gestion and the “server with
vacations” paradigm. We have already implemented the fistaach and we are currently
comparing the two strategies. This will be useful for thetrgeneration emulators, able to
emulate large-scale networks through the aggregationtefank element models.

We used this system for application performance assesskiverreport on web brows-
ing, characterized by many short-lived HTTP transfers. \&&nined experimentally the
dependence between site download duration and the offeaeddf the background traffic,
I.e., between user perceived quality and the congestiat ilethe network.

As mentioned before, we already run test with various otpefieations, such as VoIP
(Voice over IP) and video streaming using a software netweonkilator. Our future plans is
to perform similar tests using the hardware network emulagdeveloped in order to obtain
more accurate results and emphasize the differences betiveévo emulation approaches.

In addition the emulator will be used to perform tests in amtion with the design of
the ATLAS Data Collection system at CERN. Preliminary tdwtge already taken place and
we will report on them in a future paper.

Acknowledgments

The work presented here was supported by PPARC PIPSS PgeBtPA/I/S/2002/00653.
We would like to acknowledge Brian Martin and Jaroslav Pechife design of the hardware
platform. We are grateful to Matei Ciobotaru for the devehgmt of the low-level access
libraries. We would also like to thank Brian Martin and theoaypmous CPA-2005 referees
for their pertinent comments and suggestions.

References

[1] R. Beuran, M. Ivanovici, B. Dobinson, N. Davies, P. Thaop, “Network Quality of Service
Measurement System for Application Requirements Evaluatilnternational Symposium on
Performance Evaluation of Computer and Telecommunic&imtems, July 20-24, 2003, Montreal,
Canada, pp. 380-387.

[2] “Dummynet: a simple approach to the evaluation of netwanotocols”, L. Rizzo.

[3] NISTNet Network Emulatomttp://www-x.antd.nist.gov/nistnet

[4] Simenahttp://www.simena.net

[5] Anue Systemshttp://www.anuesystems.com

[6] Empirix, http://www.empirix.com

[7] Shunrahttp://www.shunra.com

[8] M. Ciobotaru, M. Ivanovici, R. Beuran, S. Stancu, “VelisaFPGA-based Hardware Platform for
Gigabit Ethernet Applications” , 6th Annual Postgraduatenosium, Liverpool, UK, June 27-28, 2005.

[9] Celoxica,http://www.celoxica.com

[10] CERN, The European Organization for Particle Physiesp: //www.cern.ch

[11] Predictable Network Solutionsttp://www.pnsol.com

M. lvanovici et al. / Assessing Application Performance: an FPGA-based Approach 395

[12] M. Ciobotaru, S. Stancu, M. LeVine, B. Martin, “GETB—Aigabit Ethernet Application Platform: its
Use in the ATLAS TDAQ Network”, Real Time 2005, Stockholm, &en, June 10, 2005.

[13] The Python Programming languagetp://www.python.org

[14] M. Joss, “IQRCC—A package for user level access to I/O resources on RCsoenpatible computers”,
CERN, Technical report ATL-D-ES-0008, October, 2003.

[15] ITU-T Recommendation 1.380, “Internet Protocol (IPafa Communication Service—IP Packet Transfer
and Availability Performance Parameters”, ITU-T, Febya099.

[16] V. Paxson, G. Almes, J. Mahdavi, M. Mathis, “Framewaok P Performance Metrics”, IETF RFC
2330, May, 1998.

[17] G. Almes, S. Kalidindi, M. Zekauskas, “A One-way DelayeMc for IPPM”, IETF RFC 2679,
September, 1999.

[18] G. Almes, S. Kalidindi, M. Zekauskas, “A One-way Packess Metric for IPPM”, IETF RFC 2680,
September, 1999.

[19] ITU-T Recommendation P.862, “Perceptual EvaluatibSpeech Quality (PESQ), An Objective Method
for End-to-end Speech Quality Assessment of Narrow-batepfiene Networks and Codecs”, ITU-T,
February, 2001.

[20] R. Beuran, M. Ilvanovici, V. Buzuloiu, “File Transfer Bermance Evaluation”, Scientific Bulletin of
University “POLITEHNICA” Bucharest, C Series (Electridahgineering), vol. 66, no. 2-4, 2004, pp.
3-14.

[21] F. R. M. Barnes, R. Beuran, R.W. Dobinson, M.J. LeVineMartin, J. Lokier, and C. Meirosu, “Testing
Ethernet Networks for the ATLAS Data Collection System”EETrans. Nucl. Sci., Vol. 49, No. 2, April
2002, pp. 516-520.

[22] M. F. Arlitt, C. L. Williamson, “Web Server Workload Chacterization: The Search for Invariants”, Proc.
SIGMETRICS, Philadelphia, PA, USA, April, 1996.

