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Abstract—At present, penetration testing is done mostly
manually, and relies heavily on the experience of the ethical
hackers that are performing it, called “pentesters”. This paper
presents an automated penetration testing framework that em-
ploys deep reinforcement learning to automate the penetration
testing process. We plan to use this framework mainly as
a component of cybersecurity training activities, to provide
guided learning for attack training by making use of the
framework to suggest possible strategies. When adding support
for actual penetration testing tools, the framework could also
be used in defense training, by automatically recreating attacks
in the training environment.

In this paper we present our approach for automated
penetration testing, which has two stages. First we use the
Shodan search engine to collect relevant server data in order
to build a realistic network topology, and employ multi-host
multi-stage vulnerability analysis (MulVAL) to generate an
attack tree for that topology; traditional search algorithms are
used to find all the possible attack paths in that tree and to
build a matrix representation as needed by deep reinforcement
learning algorithms. As a second stage, we employ the Deep Q-
Learning Network (DQN) method to discover the most easy to
exploit attack path from the possible candidates. This approach
was evaluated by generating thousands of input scenarios, and
DQN was able to find the optimal path with an accuracy of
0.86, while also providing valid solutions in the other cases.

Keywords-penetration testing; attack tree; deep reinforce-
ment learning; deep Q-learning network

I. INTRODUCTION

With the generalized use of computer networks and the

frequent occurrence of security incidents, cybersecurity has

become an increasingly prominent problem. An effective

way to address this issue is to assess the network security

features of a system by employing penetration testing. Pen-

etration testing is an authorized attack methodology used

to evaluate the security features of a system, in particular

to identify its security weaknesses by conducting ethical

attacks on it. The method is well established, and several

commercial tools are available to assist the pentesters in

performing the more tedious tasks [1]. In the field of cyber-

security education and training, defense training similarly

requires that ethical hackers conduct attacks in the training

environment, so that trainees can get hands-on experience

with handling security incidents. Penetration testing method-

ology is perfectly suitable for playing the attackers’ role in

this kind of scenario too.

Generally, penetration testing is performed mostly man-

ually, as pentesters need first to analyze the target system,

then exploit the discovered vulnerabilities in different ways

in order to penetrate the system and compromise network

resources in proof-of-concept attacks. This process is a

laborious, time-consuming and complex task that requires

a great deal of tacit knowledge, which cannot be easily

formalized, and is also prone to human errors [2]. Therefore,

in recent years, more and more people tried to use model-

based attack planning to generate the attacks by employing

a model of the target system. The Core Security company

employs this idea commercially since 2010, and in their tool

named “Core IMPACT” uses as attack planner a variant of

the Metric-FF system [3].
Regarding the use of artificial intelligence (AI) techniques

in this area, Boddy et al. first applied AI planning to

penetration testing [4], which lead to the inclusion of the

cybersecurity domain into the 2008 International Planning

Competition. Several years later, the Core Security model

[5] has been used to simulate external attacks by making

individual “attack actions” correspond to known software

vulnerability exploits. However, none of these methods

provided a complete penetration testing solution.
The attack tree method could play an important role

in ensuring that automated penetration testing is close to

human actions. This method for modelling security threats

on a given system was proposed by Schneier in 1999, and

represents an attack against it in the form of a tree structure

[6]. By analyzing the attack tree, we can better understand

the relationship between each attack method. Yousefi et al.

[7] applied reinforcement learning (RL) to analyze the attack

tree, which uses Q-learning to find the attack path, but it still

has the problem that the action space and sample space are

too small. Compared with reinforcement learning, deep re-

inforcement learning (DRL) is a more suitable approach for

analyzing the attack tree, as it combines deep learning and

reinforcement learning and adopts a trial-and-error approach

to find an optimal solution.
In this paper we present an automated penetration testing

framework that we designed and implemented with the goal

of finding the best attack path for a given topology, similarly

to a human attacker. Our main contributions are:

• Discuss the use of Shodan to collect actual server data

for constructing realistic target networks
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• Introduce our approach of building an attack represen-

tation matrix by using the MulVAL and Depth-First

Search (DFS) algorithms

• Present the manner in which the Deep Q-Learning

Network method is used to analyze the attack matrix

and find the optimal attack path

• Evaluate our approach over realistic network scenarios

built using Shodan data to show the effectiveness of

DQN for automated penetration testing

The paper continues with a research background in Sec-

tion II, providing a brief overview of the tools, algorithms

and techniques that we use. Then we discuss in detail the

architecture of the proposed automatic penetration testing

framework in Section III. In Section IV we present an exper-

iment we conducted to evaluate the framework effectiveness

on a real network topology. Finally, we conclude the paper

and propose some future improvements.

II. BACKGROUND

In this section we shall introduce the tools, algorithms

and techniques that we shall later use as components of

our automated penetration testing framework that will be

discussed in Section III.

A. Shodan

Shodan is an online search engine for Internet-connected

devices that has been available since 2009 [8]. Shodan

is often used by pentesters and even black-hat hackers to

collect information about their potential targets. According

to CNN Money, the data base of Shodan is estimated

to contain information about 500 million actual network

devices, such as their IP addresses, list of running services,

and so on [9].

In our research we shall employ Shodan to gather the

information needed in order to build realistic network

topologies, as it will be discussed in Section III-A. This

network topology information is then used as input to the

MulVAL algorithm introduced below.

B. Attack Trees

1) Attack Tree Model: Schneier first proposed the attack

tree model as a way to express the interdependence between

attack behavior and attack steps, and to realize the formaliza-

tion and documentation of the attack process [6]. Each node

of the tree represents an attack behavior or a sub-target, and

the root node represents the ultimate target of the attack.

Each child node represents either an attack behavior or a

child target that should to be finished before the parent node

can be attacked.

The nodes of the attack tree are divided into “AND” nodes

and “OR” nodes. The label “AND” means that a node can

only be targeted after all the child nodes have been targeted.

The label “OR” signifies that as long as one of the child

nodes has been targeted, the parent node can be targeted as

well. In Fig. 1 we show a graph and a text representation of

each of the two possible node types, “AND” and “OR”.
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Figure 1. Attack tree node representation.

2) MulVAL: MulVAL is an open-source tool for gen-

erating the actual attack tree that corresponds to a given

network topology [10]. Depending on the network topology

properties, it has been shown that the complexity of the

attack tree generation algorithm is between O(n2) and

O(n3), hence reasonable for typical small-and-medium size

company networks with tens of hosts.

In our framework MulVAL is used to find all the possible

paths for a given input network topology, as it will be

discussed in Section III-A. A matrix is built according to

all the possible paths discovered, then it is simplified using

Depth-First Search (DFS) algorithm to make it more suitable

for use with the DRL algorithm.

C. Reinforcement Learning

Reinforcement learning (RL) is a type of learning method

that maps environment state to actions, so that an agent

can get the maximum cumulative reward in the process

of interacting with the environment [11]. As an interactive

learning method, the main characteristics of RL are trial-and-

error and delayed returns [12]. RL agents try to determine

strategies that can offer actions corresponding to any given

environment state, with the final goal of discovering an

optimal strategy so that the cumulative reward received is

the largest [11], [13].

Fig. 2 shows the interaction process between the agent and

the environment. At each time step t, the agent observes the

environment to obtain the state St, and then executes action

At. The environment generates the new state St+1 and the

reward Rt depending on At. Such a process can be described

by Markov Decision Processes (MDP). An MDP is divided

into 4 parts, also known as quads, that are denoted by (S,

A, P, R), where S represents the state set; A represents the

action set; P (s’| s, a) represents the probability of transition

to s′ after taking the action a in state s; R(s, a) represents

the reward obtained by taking the action a in state s.

The goal of the strategy is to maximize future cumulative

rewards, meaning that the “quality” of the current state

can be measured by the future cumulative rewards of that

state. Reinforcement learning introduces a reward function
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Figure 2. Overview of the reinforcement learning process.

to calculate the reward at any given time t:

Rt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑
k=0

γkrt+1+k (1)

where γ is the discount coefficient. Since the farther away

from the current state the greater the uncertainty of the

reward value is, γ is generally used to account for this

uncertainty.

Furthermore, the concept of value function is used to

represent the “value” of a state, i.e., the expectation of future

cumulative rewards for that state:

V π(s) = E

[ ∞∑
k=0

γkrt+1+k | st = s

]
(2)

In addition, the action-state value function is used to

express future cumulative rewards conditioned both by a

state and an action:

Qπ(s, a) = E

[ ∞∑
k=0

γkrt+1+k | st = s, at = a

]
(3)

D. Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) refers to a class of

techniques that combine deep learning and reinforcement

learning. DRL is a general learning method by which the

“agent” obtains state information from the environment,

selects appropriate actions according to its own strategies,

changes the state of the environment, then gets rewards or

incentives that express the efficacy of the actions to the

agent depending on the new environment state [14]. When

applying DRL to penetration testing, the agent plays the role

of the pentester, and choose the most effective path in order

to obtain the maximum reward.

DRL algorithms are divided into three main classes:

value-based functions, strategy-based search and model-

based methods. Deep Q-Learning Network (DQN) is a

representative value-based method by Mnih et al. [15], [16]

that combines a Convolution Neural Network (CNN) with

the Q-Learning algorithm [17] in traditional reinforcement

learning to create the new DQN model. The input of the

DQN model is a simplified matrix that undergoes a non-

linear transformation of 3 convolutional layers and 2 fully-

connected layers, and finally generates a Q value for each

action in the output layer. Fig. 3 shows the architecture of

the DQN model.

Input
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.

.

.

.

.

.

.
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Connected
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Q Value

Figure 3. Overview of the DQN model architecture.

In Fig. 4 we introduce the training process of DQN, which

improves the traditional Q-learning algorithm in order to

alleviate problems such as instability in the representation

function of the non-linear network. For instance, DQN uses

experience replay to process the transfer samples. At each

time step t, the transfer samples obtained by the agent

interacting with the environment are stored in the replay

buffer unit. During the training process, a small batch of

transfer samples is selected randomly and the Stochastic

Gradient Descent (SGD) algorithm is used to update the

network parameter θ.

Replay Buffer

Environment Current Net Target Net

Loss Function

argmaxaQ(s, a; θ)

(s, a, r, s' )

(s,a)

Q(s,a;θ) max Q(s ,a θ−)

s '
r

s

Figure 4. Overview of the DQN training process.

DQN also modifies the manner in which the Q value is

computed. Thus, in DQN Q(s, a | θi) represents the output

of the current value network, and it is used to evaluate the

value function of the current state action. Q(s, a | θ−i )
represents the output of the target value network, and

Yi = r + γ max
a′

Q(s
′
, a

′ | θ−i ) is generally adopted as the

target Q value.
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The parameter θ of the current value network is updated in

real time. After every N rounds of iteration, the parameters

of the current value network are copied into the target

value network. The network parameters are then updated

by minimizing the mean square error between the current Q
value and the target Q value. The error function is:

L(θi) = Es,a,r,s′ [(Yi −Q(s, a | θi))2] (4)

and the gradients are computed as follows:

∇θiL(θi) =

Es,a,r,s
′ [(Yi −Q(s, a | θi))∇θiQ(s, a | θi)] (5)

III. FRAMEWORK ARCHITECTURE

In this section we present the automated penetration

testing framework that we designed and implemented based

on deep reinforcement learning techniques. The framework

has three main components (see Fig. 5):

• Training Data: Build the training data needed as input

by the DQN algorithm

• DQN Module: Train the DQN algorithm, then use the

trained model for penetration testing

• Penetration Tools: Wrapper for external tools used to

perform actions on real systems

MulVAL

Shodan

Network
Topology

Information

Simplified
Matrix

DFS

Agent

Environment

state reward action

DQN
Deep Reinforcement Learning Model

Metasploit

SSH-KeyFinder

Auto-Pres

PenetrationTools

......

Send
Commands

Get
Results

Figure 5. Architecture of the automated penetration testing framework.

In what follows we describe in detail each of the frame-

work components.

A. Training Data

The key to using deep learning is to have training data.

Our approach for creating the training data to feed to the

DQN model includes three steps:

• Use Shodan to collect network information for model-

ing a realistic network environment

• Use MulVAL to create the attack tree corresponding to

that network environment

• Preprocess the data in order to make it suitable for use

in the DQN model

1) Host Dataset: In order to build the training data, we

first use Shodan to collect information about real network

devices. For example, if we want to get information about

real web servers, the Shodan API will return data that in-

cludes the actual IP address, used ports and protocols, known

vulnerabilities, and so on. An example of raw data collected

via Shodan is shown in Fig. 6 (sensitive information, such

as IP address, was removed).

"info": "(CentOS)",
"ip_str": 192.168.1.1,
"isp": HiNet,
"os": null,
"port": 443,
"product": "Apache httpd",
"transport": "tcp",
"version": "2.2.15",
"vulns": {

"CVE-2010-1452",
...

}

Figure 6. Example of raw data collected via Shodan for a web server.

For each different service, we create a separate service

dataset file with all the relevant information concerning a

particular network host running that service. In the process

of using the collected data we protect privacy by retaining

only unidentifiable information, such as open ports or service

names. Table I shows some web server profile examples.

Table I
WEB SERVER PROFILE EXAMPLES

Product Port Protocol Vulnerability OS
Apache 80 https CVE-2010-1452 CentOS
Nginx 8080 https CVE-2011-0419 Ubuntu

mt-daapd DAAP 3689 tcp CVE-2017-9617 FreeBSD

In this way we obtain the real host dataset through Shodan

and use it as the basis of DQN training dataset.
2) Vulnerability Dataset: In addition to the host dataset,

we also create a vulnerability dataset file. For a set of

known vulnerabilities, the vulnerability dataset includes the

CVE [18], [19] and Microsoft vulnerability identification

numbers, as well as the type, base score and exploitability

score components of the CVSS score [20]. In order to

include all the relevant information that we require, we com-

bine information from the National Vulnerability Database

(NVD) and the Microsoft (MS) Database to create a new

dataset. Table II shows a few items from the vulnerability

dataset we constructed.
3) DQN Dataset: DQN dataset is a training dataset for

Deep Q-Learning network which includes the host dataset

collected by Shodan and vulnerability dataset. To generate

the dataset needed for the DQN algorithm, we first need to

create the attack tree for a given set of network topologies.
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Table II
VULNERABILITY DATASET EXAMPLE ENTRIES

CVE ID MS ID Type BaseScore ExpScore
CVE-2010-0820 MS10-068 Buffer Errors 9.0 8.0
CVE-2014-6321 MS14-066 Code Injection 10.0 10.0
CVE-2017-0022 MS17-022 Information Leak 4.3 8.6

For this purpose, we created a series of network topology

templates that are populated with actual data from the host

dataset. Fig. 7 shows an example template for a vulnerability

configuration of webserver.

vulExists(webServer,’CAN-2002-0392’,httpd).
vulProperty(’CAN-2002-0392’,

remoteExploit, privEscalation).
networkServiceInfo(webServer,

httpd,tcp,80,apache).

Figure 7. Example template for a configuration of webserver.

From this example we can know that the vulExists
comes from Shodan, and it shows that the target is a

webserver which exists the vulnerability of CAN-2002-

0392. The vulProperty comes from Vulnerability dataset

and shows the type of CAN-2002-0392 is remote exploit

and it can cause the effect of privilege escalation. This

detailed network topology information is used by MulVAL

to generate the attack tree that corresponds to that topology.

An example network topology, and the generated attack tree

for that topology are shown later in the paper, in Figs. 8 and

9, respectively.

Next, the attack tree must be converted into a transfer

matrix. Yousefi et al. first presented a method for transform-

ing an attack tree into a transfer matrix [7], but it is not

suitable for penetration testing, because during the process of

penetration testing, other steps in addition to vulnerabilities,

such as file access, command execution, etc. are also im-

portant. For this reason we propose an improved method for

converting the attack tree into a simplified transfer matrix.

As a first step, we map all the nodes in the attack tree to a

matrix form that includes CVSS score information for the

vulnerabilities, and some predefined score for other actions,

such as accessing files. At the next step, instead of feeding

this matrix directly into the DQN algorithm, we decided to

simplify it by using the Depth-First Search (DFS) algorithm.

The idea is that the full transfer matrix shows all the possible

movements, but it can be simplified if we select only those

that can be used to reach the attack goal.

Consequently we use the DFS algorithm to find all the

possible paths that can reach the goal, then we create

a simplified matrix that contains: (i) the scores for the

start node in the first column; (ii) the total scores for the

intermediate steps in intermediate columns; (iii) the score

for the goal node in the last column. These scores will be

further used as reward scores in the DQN algorithm.

B. DQN

DQN is used in our framework to determine the most

feasible attack paths through continuous training of the DQN

model. The input of the model is the simplified matrix

mentioned above, and for the activate function we used

the softmax function. The output of the DQN model is

the optimal attack path. During the process of learning, the

DQN model agent represents an attacker, and the target

environment is modelled by the simplified attack matrix. The

attacker can move from node to node in the attack matrix

until it reaches the final goal, the target server.

The reward corresponding to exploiting each vulnerability

used in the DQN model is computed by a vulnerability

score that we defined based on components of the Common

Vulnerability Scoring System (CVSS):

Scorevul = baseScore× exploitablityScore

10
(6)

In CVSS, the base score reflects the harmfulness of the

vulnerability itself, and the exploitability score reflects the

feasibility of exploiting that particular vulnerability. There-

fore, we use the exploitability score, which has a maximum

value of 10, to weight the significance of the base score

considering how feasible it is to use a certain vulnerability.

C. Penetration Tools

In order to make possible the use of our automated

penetration testing framework to conduct attacks on real

systems, it needs the ability to interact with actual net-

work environments, for instance to run commands, exploit

vulnerabilities, and so on. Instead of building our own

tools, for this stage we decided to make use of existing

penetration testing tools, such as Metasploit [21], similarly

to the approach taken by CyPROM [22].

While the implementation of this functionality is still

ongoing, we will release it together with the rest of the

framework in the near future. Our approach is to create a

wrapper for the penetration testing tools, so that the outcome

of the DQN model trained as described above can be used

to send commands to those penetration tools, which will

perform actions on the real target systems. The results of

those actions is received as feedback, and used in order to

decide how to proceed with a given attack path.

IV. EXPERIMENTAL RESULTS

In order to validate our approach we have conducted

a series of experiments by modeling an example network

topology and using DQN algorithm to determine the best

attack path for that topology.
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A. Experiment Scenario

Fig. 8 shows the network topology model that we con-

sidered in our experiments. The model represent a small

company network which includes a web server, a file server

and a workstation. The file server and workstation are in

one subnet connected via a router that further connects to a

firewall. The web server is in a different subnet and connects

via the firewall to the Internet.

Figure 8. Network topology for the experiment scenario.

From an attack perspective, we make the following as-

sumptions about the attack methods:

• The attacker starts from the Internet and can access the

web server via the HTTP and HTTPS protocols.

• The file server and the web server can connect to each

other via file protocols such as NFS, FTP, and so on.

• The file server and the workstation can connect to each

other via file protocols such as NFS, Samba, and so on.

• The file server and the workstation can access the

Internet via the HTTP and HTTPS protocols.

To configure the actual protocol details, we have used data

collected using Shodan to initialize the information about

vulnerabilities, open ports, products, and protocols for the

web server and the file server. As for the workstation, we

considered it runs no services, but just uses various transfer

protocols. Table III shows an example of the network

information configuration for these hosts.

Table III
HOST CONFIGURATION INFORMATION

Host Vulnerability Port Product Protocol
Web server CVE-2019-0211 80 Apache HTTP/HTTPS
File server CVE-2015-3306 21 - FTP

Workstation - - - HTTP/HTTPS/FTP

The vulnerability dataset is used to attach detailed infor-

mation to each vulnerability, including its type and effect

(such as the permission level that can be achieved by exploit-

ing that vulnerability). For every different vulnerability type,

the attack tree algorithms will generate a different attack

path. In Table IV we give some examples of vulnerability

types encountered in our scenario.

Table IV
DETAILED VULNERABILITY INFORMATION

Vulnerability Type Effect
CVE-2019-0211 Privilege Escalation root
CVE-2015-3306 Improper Access Control user

B. DQN Dataset Generation

Based on the network topology and configuration infor-

mation that we discussed, MulVAL is used to generate the

corresponding attack tree. Fig. 9 displays the main part of

the attack tree generated for our example scenario, each

node being tagged with a short description of how a certain

vulnerability is to be exploited. In this example, the attacker

starts from the Internet, which is represented by node 26

located at the top-center of the figure. The attacker’s goal

is to execute code on the workstation represented by node

1 located at the top-left side of the figure. We assume that

the attacker can move in the direction of the arrow until

reaching the attack goal.

In order to build the transfer matrix needed by the DQN

algorithm, each node needs to be assigned a reward score,

as follows:

1) The reward value of the start node (node 26 in our

example) is 0.01, and the reward score of the goal node

(node 1 in our example) is 100.

2) For every node that exploits a vulnerability (such as

node 16 in our example, exploiting the vulnerability

CVE-2012-0053 at node 28), we use the Scorevul value

defined in Eq. 6 as the reward score.

3) For every node that executes some code or accesses files

(denoted by execCode, accessF ile in our example)

we define a reward score of 1.5, since such actions are

important during the penetration testing process (target

node 1 is excluded from this rule).

4) For any other node in the tree we give the reward score

0, and if there is no path between two nodes, the reward

score is -1.

C. DQN Training Results

The simplified matrix above becomes the input of the

DQN model, which is then trained to determine the total re-

wards for all the possible paths. For the network topology we

presented, we used Shodan data with different vulnerabilities

for the considered protocols into the training template so as

to create a totoal of 2000 different attack trees as training

data, and 1000 different attack trees as validation data. For

validation purposes we define that the optimal path in the
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simplified matrix is that with the smallest number of steps

when the highest reward is selected. The model accuracy and

average step count for the optimal attack path are provided

in Table V. From these results we can observe that for this

sample network topology the model has a good performance

in finding the most feasible path.

Table V
ACCURACY AND AVERAGE STEP COUNT

DRL Framework Accuracy Average Step Count
DQN Model 0.863 1.927

Fig. 10 shows the average reward changes of the DQN

model for one of the attack paths in the experiment scenario

during a total of 100 training iterations. One can notice that

the reward is small at first, then gradually rises after about

30 iterations. After about 60 iterations, the reward becomes

stable meaning that the DQN model has found the optimal

path. In that case the path is given by the sequence of steps

“26 → 24 → 17 → 16 → 15 → 13 → 10 → 9 → 8 →
6 → 5 → 4 → 3 → 2 → 1” (cf. Fig. 9). This path not only

makes full use of the vulnerabilities of both the web server

and the file server, but also adopts simple attack methods

that are easy to use via penetration testing tools.

Figure 10. Reward changes for one attack path in the experiment scenario.

D. Discussion

Although the DQN algorithm seems to converge relatively

fast when using several sample network topologies, we

consider that more work is required to determine the right

choice of parameters for the DQN model over a large set of

scenarios with different properties.

While have designed our framework for automated pen-

etration testing of actual systems, so far we have only

performed training on generic network topology models.

As a next step we consider feeding to the DQN algorithm

as training model the results of scanning specific actual

network topologies, so that it can evaluate the particular

characteristics for that topology and suggest an optimal

attack path for that topology.

Each node on the most feasible attack path identified by

the DQN algorithm contains all the information needed to

effectively conduct that step of the attack. Consequently, the

path and node information can be used to drive the execution

of a penetration testing tool such by Metasploit to conduct

that attack. For example, knowing that node 28 represents

the CVE-2012-0053 vulnerability, the framework could send

a command to Metasploit and use the internal module msf
exploit to exploit that vulnerability of the web server.

We plan to leverage this in the Penetration Tools module

mentioned in Section III-C.

Our framework is intended for use in the area of cy-

bersecurity education and training, and it can already be

employed for attack training activities, for instance to sug-

gest attack paths that the trainees can then experiment

with by themselves in the cyber range, by following a

guided learning methodology. Once the Penetration Tools

module implementation is finished, we intend to also use

this framework to conduct realistic attacks in the training

environment in an automated manner. This will reduce

the cost of organizing defense training activities, since the

support of white-hat hackers to conduct such attacks will

no longer be required. Repeating training activities that

employ realistic attack methods will lead to a significant

improvement of the participants’ defense skills.

V. CONCLUSION

In this paper we have proposed an automated penetration

testing framework that is based on deep reinforcement

learning techniques, in particular Deep Q-Learning Network

(DQN). Our approach innovatively combines the Shodan

search engine with a variety of vulnerability datasets to

gather real host and vulnerability data for building re-

alistic training and validation scenarios. The attack tree

methodology is then used to generate attack information

for each of the training scenarios, which is then processed

and used to train the DQN model. The training uses reward

scores assigned to each node mainly based on CVSS score

information to determine the most feasible attack path for a

given network scenario.

To evaluate the applicability of this approach we have

conducted an experiment in which a given network topology

was populated with real host and vulnerability data to

construct 2000 training and 1000 validation scenarios. Even

with such a low number of training scenarios, DQN was

able to achieve an accuracy rate of 0.86 in determining the

optimal attack path, and provided viable solutions that met

our expectations in the other cases.

9



Our framework can already be used to suggest attack

strategies to assist with cybersecurity attack training ac-

tivities. The only pending item of the framework is the

Pentetration Tools module, for which implementation is

ongoing. Its completion will make it possible to conduct au-

tomated attacks on real network environments, thus greatly

simplifying the penetration testing process and assisting in

defense training activities.

As future work, we plan to focus on two main directions.

On the one hand, we plan to expand the training dataset

with additional network topologies, so as to improve the

versatility and stability of the DQN model. On the other

hand, we consider integrating a network service scanning

function into the framework, so that information on real

target environments can be automatically provided to the

DQN model, leading to more accurate results for actual

network topologies.
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