DynamiQ: A Tool for Dynamic Emulation of Networks

*
Razvan Beuran
Japan Advanced Institute of
Science and Technology
Japan
razvan@ijaist.ac.jp

Shingo Yasuda
National Institute of
Information and
Communications Technology
Japan

Tomoya Inoue
Japan Advanced Institute of
Science and Technology
Japan
t-inoue@ijaist.ac.jp

s-yasuda@nict.go.jp

Yuuki Takano
National Institute of
Information and
Communications Technology
Japan
ytakano@nict.go.jp

ABSTRACT

Interactive network experiments, in which experiment con-
ditions change dynamically based on input from users or
other external sources, are the most appropriate approach
when evaluating solutions to practical network problems, for
teaching and /or training purposes, etc. Support for dynamic
experiment conditions is also required whenever an experi-
ment cannot be fully defined from start, for instance when
node behavior (application execution, mobility pattern, etc.)
depends on factors such as communication conditions in the
experiment, traffic content, and so on.

In this paper we present the network emulation module
named dynamiQ that makes possible the dynamic emula-
tion of networks. We also outline an interactive experiment
framework that uses dynamiQ to meet the above require-
ments. The evaluation of dynamiQ in this context shows
that no significant performance penalties occur because of
its dynamic nature. Our interactive experiment framework
has already been used in practice, including for a demon-
stration at Interop Tokyo 2014.

Categories and Subject Descriptors

C.4 [Performance of Systems|: Measurement techniques

General Terms

Experimentation, Performance, Verification

*Razvan Beuran is also with the National Institute of In-
formation and Communications Technology (NICT), Japan.
This work was done when he was mainly with NICT.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

TRIDENTCOM ’15 Vancouver, Canada

Copyright 2015 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Toshiyuki Miyachi
National Institute of
Information and
Communications Technology
Japan
miyachi@nict.go.jp

Yoichi Shinoda
Japan Advanced Institute of
Science and Technology
Japan
shinoda@jaist.ac.jp

Keywords

Dynamic experiment conditions, network emulation, inter-
active experiments

1. INTRODUCTION

Traditionally, network experiments are carried out based
on predefined scenarios, especially in the case of simulation
and emulation. This is the most straightforward approach,
but it requires knowing/deciding in advance all the experi-
ment conditions: number and position of the nodes (includ-
ing their mobility if any), properties of the communication
environment, traffic pattern and content, etc.

Predefined scenarios are however not feasible in circum-
stances such as the following ones:

e User input is required or desired for performing an
experiment;

e Experiment conditions depend on external inputs, such
as physics simulators, etc.;

e The behavior of experiment components depends on
the node communication pattern and/or content.

Interactive experiments are the most appropriate alterna-
tive when searching for the solution to a certain practical
problem, such as the wireless network planning for a certain
geographic area. Thus, network experts could use an inter-
active experiment platform to virtually deploy various net-
work solutions and analyze their cost and performance char-
acteristics, without the time overhead, risks and expenses
related to the actual deployment of alternative solutions.

Interactive experiments can also be used for teaching or
training purposes, as a means to provide an affordable yet
valuable hands-on experience. For example, students can be
asked to construct networks in the virtual environment, and
then investigate the state of the routing protocols involved.
Given the use of emulation, this can be done in the same way
as in the real world, by logging into the running machines
and analyzing their state.

Complex experiments typically require data from external
simulators in order to recreate realistic conditions. For in-
stance, a physics simulator could be used to determine the

effects of an earthquake or some other disaster on a certain
geographic area. These effects, such as damage to the net-
work and road infrastructure, need to be fed into the exper-
iment scenario, so that their influence is taken into account
(e.g., nodes become offline, mobility patterns change, etc.).
The easiest way to handle such situations is to support dy-
namic experiment conditions in the experiment framework.

Some network experiments may necessitate the ability to
reproduce changes in nodes’ behavior depending on their
communication activities. For instance, based on the infor-
mation received, nodes may decide to change their mobility
pattern (e.g., modify their trajectory in order to avoid con-
gested /unusable roads — a typical application of vehicular
networks). The easiest manner to handle such kind of sce-
narios is again to support dynamic experiment conditions.

In this paper we present our endeavor towards creating
an interactive experiment framework that makes it possi-
ble to perform realistic network experiments in dynamic,
externally-controlled conditions. The main contributions of
this paper are:

e Describe the dynamic network emulator that we de-
signed and implemented, named dynamiQ, which is a
key element in this context;

e Discuss the overall interactive experiment framework
that uses dynamiQ to provide the above functionality.

Our interactive experiment framework has already been
used in practice, including for a demonstration entitled “In-
teractive Mesh Network Planning” at the Interop Tokyo 2014
annual trade fair for information technology, where it re-
ceived the Special Jury Best of Show Award.

The remainder of the paper is organized as follows. In Sec-
tion 2 we summarize the most important aspects regarding
the network emulation testbed used in our approach. Sec-
tion 3 introduces the dynamic network emulation tool dy-
namiQ that was developed based on several existing testbed
components. In Section 4 we outline the design of the in-
teractive experiment framework that uses dynamiQ. This is
followed in Section 5 by a performance evaluation of dynamiQ
in the context of the interactive framework implementation.
The paper ends with conclusions and references.

2. NETWORK EMULATION TESTBED

An interactive experiment framework such as the one we
propose requires an execution platform with sufficient capa-
bilities to meet all the execution requirements. While sim-
ulators can be used for some aspects of the framework, for
the network-related aspects we use the emulation approach,
since it allows using real applications and protocols in the
experiments. Thus, the results and observations are directly
applicable to practical situations.

Another important characteristic of emulation is that it is
by design intended to run in real time, a necessary feature
when dealing interactively with user input.

2.1 Infrastructure

StarBED is a network testbed located in Ishikawa Prefec-
ture, Japan, at the Hokuriku StarBED Technology Center of
the National Institute of Information and Communications
Technology (NICT) [6].

StarBED makes available for experiments more than 1400
interconnected PCs, and represents the physical infrastruc-
ture of our interactive experiment framework. The control

and the experiment networks of StarBED are independent
of each other, so as to prevent interference between the man-
agement and the experiment traffic.

SpringOS is a software suite employed for performing ex-
periments on StarBED. SpringOS is used to configure the
hosts and the interconnecting network for the experiment,
and also to effectively run the experiments.

2.2 Network emulation

QOMET (Quality Observation and Mobility Experiment
Tools) is a set of tools for network emulation targeting mainly
wireless networks [1]. The input of QOMET is represented
by an XML-based user-defined scenario that describes the
network environment, including node properties and mobil-
ity, area topography, etc.

QOMET provides the necessary mechanisms for perform-
ing experiments in a distributed manner by reproducing on
StarBED the communication conditions between the emu-
lated wireless nodes [2]. The network emulation component
of our interactive experiment framework, dynamiQ, is based
on QOMET, as it will be described in Section 3.

2.2.1 deltaQ

As discussed in detail in the references mentioned above,
emulation using QOMET is performed as a two-stage pro-
cess. Firstly, the module called deltaQ will process the in-
put scenario and compute the communication conditions be-
tween nodes, which we call network quality degradation and
denote by AQ.

The AQ parameters are calculated as follows (we use here
IEEE 802.11a/b/g as an example, but other network tech-
nologies are handled in a similar manner):

Packet loss rate: The frame error rate (FER) at PHY layer
is computed based on the distance between the com-
municating nodes, the properties of the communica-
tion environment, propagation model, etc. Then the
MAC layer retransmission mechanism is taken into ac-
count to determine the network layer packet loss rate;

Packet delay: 1t is calculated as an average value by consid-
ering physical aspects (transmission and propagation
delays), but also the actual MAC layer protocol and
its specific mechanisms, such as congestion avoidance
and retransmission;

Awailable bandwidth: Knowing the packet duration, current
operating rate and packet delay, it is straightforward
to determine the available bandwidth.

The computed AQ parameters are saved in a binary for-
mat that will be used subsequently during the real-time em-
ulation process.

2.2.2 wireconf

In the second stage, the QOMET module called wire-
conf will recreate in the StarBED experiment network the
communication conditions between scenario nodes based on
the AQ parameters previously calculated. This is achieved
through the use of the link emulation system named ipfw,
which can artificially introduce packet loss, delay and band-
width limitations for the configured traffic flows [3].

First of all wireconf does some preliminary initialization
of ipfw depending on the relevant parameters read from the

deltaQ output file, mainly related to the creation of the ap-
propriate rules and pipes for controlling the communication
conditions between nodes. Following that, the operation of
wireconf involves the following steps executed periodically
based on a user-defined time interval:

1. Read the AQ parameters that correspond to the next
time interval from the deltaQ output file;

2. When the deadline for changing network conditions
arrives, reconfigure the ipfw pipes according to the
AQ parameters.

The above loop is executed until all the parameters in the
deltaQ output file are exhausted, and the emulation ends.

3. DYNAMIC EMULATION SUPPORT

In order to support dynamic emulation of networks it is
necessary to have a network emulation component that can
emulate the experiment network even as scenario conditions
change. Such dynamic scenario reconfiguration ensures that
interactive experiments under direct user control can be per-
formed (although some predefined network components can
be included to facilitate experiment setup).

Scenario reconfiguration must be handled in real time, so
that both the internal scenario changes and the communica-
tion condition changes are applied in a timely fashion. Un-
less this happens, the user cannot get the necessary feedback
from the experiment framework, which diminishes consider-
ably the advantages of interactive execution.

3.1 Overview

The solution that we have chosen is that each node in an
experiment handles its own network emulation functionality.
This makes it possible to increase experiment scale with a
linear O(N) dependency on the number of nodes (compared
to the case when emulation management would be done in
a centralized manner, hence with an O(N?) complexity).

The dynamic network emulation functionality is imple-
mented by the module called dynamiQ (dynamic QOMET).
DynamiQ effectively provides the network emulation function-
ality of QOMET but in a dynamic manner, without a prede-
fined scenario as its static counterpart, the original QOMET.

For this purpose an external component needs to be in-
troduced, that we call Ezperiment Manager. Its function is
to continuously provide information to dynamiQ regarding
experiment scenario changes. This module and the other
components of the overall interactive experiment framework
will be discussed in Section 4.

Each node in the emulation experiment runs an instance
of the dynamiQ module (see Figure 1). This module has to
handle the following functions:

1. Communicate with the Ezperiment Manager for sce-
nario (re)configuration purposes;

2. Compute the network communication conditions that
correspond to the updated scenario;

3. Configure the network connection so as to recreate the
newly calculated conditions.

Experiment Node

i< Experiment
== Network "

Emulation
Controller

dynamiQ

Experiment
Manager

Figure 1: Architecture of the dynamiQ network em-
ulator; an instance of dynamiQ runs on each experi-
ment node.

3.2 Implementation

The functionality of dynamiQ is implemented as follows.
The module maintains a data structure representing the ex-
periment scenario: nodes, communication environment, etc.
The core component named Emulation Controller contains
a loop which is executed periodically based on a user-defined
time interval. At each step of the algorithm the following
actions are taken:

1. Request scenario information from the global Ezper-
iment Manager; the content is parsed, and the in-
ternal scenario representation is updated accordingly.
For instance, new positions are set for the experiment
nodes, new experiment nodes of the specified types are
activated, node settings, such as transmit power, are
changed, etc.;

2. After updating the scenario representation, call the
deltaQ library of QOMET to recompute the commu-
nication conditions between nodes;

3. When the deadline for changing network conditions
arrives, apply the new communication conditions to
the network link by means of the wireconf library.

We decided to use the “pull” communication model in dy-
namiQ for retrieving scenario information from the Ezperi-
ment Manager so as to have a controllable rate at which re-
configuration events occur. Thus, all the changes that take
place during a time interval are dealt with at once, and emu-
lation accuracy is not influenced by the computation burden
incurred if changes were dealt with individually.

The dynamiQ module is implemented in C, similar to the
other QOMET components. The module uses the JSON
(JavaScript Object Notation) data format [4] to communi-
cate with the Ezperiment Manager. For handling JSON data
we used jsmn, which is a minimalistic JSON parser imple-
mented in C [8].

4. INTERACTIVE EXPERIMENT FRAME-
WORK

The interactive experiment framework that we designed
has several components in addition to dynamiQ, as it will be
described next. Please refer to Figure 2 for an overview of
the architecture showing the components and their interac-
tions. Note that the practical details in the discussion that

Experiment Node

‘| dynamiQ '-'f'—Ex)Jeriment
===~ Network .-

Mobility Visualizer &
Generator User Interface

Figure 2: Overview of the interactive experiment
framework architecture.

Experiment
Manager

Q0548
SCORE 210/T000

Figure 3: Screenshot of the 2D experiment visual-
izer and user interface.

follows are based on the current proof-of-concept implemen-
tation of the framework; some aspects may change in the
final implementation.

4.1 Experiment Manager

The experiments in our framework are managed by a cen-
tral module named FEzxperiment Manager. Its role is to mul-
tiplex the information from different sources, and to drive
the execution of the framework components.

The Experiment Manager is implemented in Ruby and
uses the JSON format for exchanging information with all
the other components.

4.2 Visualizer & User Interface

The Visualizer € User Interface module, as its name indi-
cates, first of all handles the display of the experiment state
to the user. Secondly, this component is used to get user in-
put so as to control the experiment flow. Thus, one can add
nodes to the experiment, modify their position or settings,
and so on, then see how these changes affect the experiment,
for instance, how the network topology and communication
conditions vary.

In order to effectively deal with user input, experiment
status must be visualized continuously. In our current im-
plementation, a 2D visualizer is used to provide a top view
of the experiment area (see Figure 3). The 2D visualizer
is coupled with the user interface to provide input to the
interactive framework. The current implementation uses
JavaScript, so that it can run in any web browser. Dur-
ing demonstrations user input is typically provided through
a touch-screen interface running Windows 8.

4.3 Other components

The modules described so far are fundamental compo-
nents of the interactive experiment framework. However,
for demonstration purposes, two more modules were added
to our proof-of-concept implementation.

4.3.1 Status Reporter

The first of them is called Status Reporter. Its role is
to gather status information from the running experiment
nodes, hence one instance runs on each node. The status in-
formation is then used by the other framework components,
at this time mainly for visualization purposes.

Status Reporter functionality focuses presently on obtain-
ing the topology of the mesh network that we constructed
in our demonstration experiments using the OLSR routing
daemon named olsrd [7]. This is achieved by employing the
txtinfo plugin of OLSR, which accepts HT'TP connections
and returns internal OLSR status information.

The information thus collected from the experiment net-
work is converted to JSON format and sent to the Ezxperi-
ment Manager, which then makes it available to the Visu-
alizer & User Interface module. As an optimization, in the
current implementation the Emulation Controller compo-
nent of dynamiQ also provides the functionality of the Sta-
tus Reporter. This allows minimizing the communication
overhead, since OLSR information is included in the “pull”
requests sent by dynamiQ to the Ezperiment Manager.

4.3.2 Mobility Generator

The deltaQ module in QOMET includes some mobility
generation capabilities, however our dynamic experiment
framework makes it possible to interface with external sim-
ulators as well, and thus to easily extend the functionality
of the framework.

In our proof-of-concept implementation we have used the
ONE simulator [5] as a mobility generator, in particular we
used the built-in SPMBM (Shortest Path Map Based Move-
ment) model in the ONE simulator to generate trajectories
of the mobile nodes given the road map on which they are
to move and their destinations.

The Mobility Generator module drives the ONE simula-
tor and provides the resulting mobility trace data to the
Ezperiment Manager on demand. This module, in its turn,
supplies mobility information to dynamiQ for network emu-
lation purposes, and to the Visualizer & User Interface for
display purposes.

S. PERFORMANCE EVALUATION

The interactive experiment framework that we designed
and implemented has several advantages compared to tradi-
tional predefined experiment platforms, since it makes possi-
ble a both affordable and realistic hands-on experience with
network experiments. However, some trade-offs are neces-
sary to provide this functionality.

5.1 Time lag

The main potential issue with our dynamic emulation ap-
proach is that interactivity may introduce a time lag in the
experiment flow. Factors the may contribute to this are:

e The time gap between the moment a user interacts
with the framework through the user interface, and the
moment this information is made available to dynamiQ;

e The additional delay until the corresponding actions
are actually recreated in the emulated network.

The first time gap depends mainly on the communication
delays between the Visualizer & User Interface and Exper-
iment Manager, and between the Ezperiment Manager and
dynamiQ. If the hosts running these systems are all in the
same local network, we estimate this overhead should not
exceed several tens of milliseconds.

For demonstrations, even if the experiment hosts are within
the StarBED testbed, the user interface needs to be deployed
at the actual location of the demonstration. In this case the
communication delay and jitter between the Visualizer &
User Interface and the Ezperiment Manager increase, and
could have a significant effect on overall system responsive-
ness. To handle this issue there are two alternatives: (i) Use
QoS solutions for minimizing the above delay and jitter; (ii)
Use a “portable” mini-testbed instead of StarBED that is
placed in the same network with the user interface host.

The additional delay related to reproducing the emulated
network conditions is dominated by the time needed to re-
compute the communication conditions based on the recon-
figured scenario. As mentioned before, given the distributed
execution mechanism of dynamiQ, this delay has an O(N)
dependency on the number of nodes.

Our approach for dynamic emulation of networks works
as expected if the sum of the above two delays introduced
by the dynamic emulation framework does not exceed the
time step used in emulation. Note that given the “pull”
communication model used by dynamiQ to retrieve scenario
information, a delay of up to one time interval can occur
before user interface actions are taken into account. Since
the time interval was set to 500 ms, this should not impact
significantly the framework interactivity and responsiveness.

As a side note, users of our framework have noticed that
it takes a certain time between performing an action (such
as adding a new node to the network) and seeing its effect
on the network topology (e.g., until the node becomes part
of the network topology). This issue is unrelated to the
discussion above, and it is a property of the underlying net-
work protocols. For instance, it simply takes some time for
a protocol such as OLSR to discover a new network node, to
recompute the network topology, and to update its internal
state. Such delays are normal, and are a consequence of the
fact that we employ real network protocol implementations;
an instantaneous effect may seem more “appealing” at first
sight, but it is neither realistic nor meaningful.

5.2 Experimental evaluation

We present here an evaluation of the interactive experi-
ment framework that focuses on the dynamiQ module and its
interaction with the FExperiment Manager.

The evaluation was done in the following conditions. The
experiment infrastructure were hosts with Intel Xeon CPUs
at 2.5 GHz and with 32 GB RAM running the Ubuntu
14.04.1 LTS operating system. The emulated nodes were
executed on these hosts as virtual machines (VMs) running
the CentOS 6.5 operating system. A total of 4 hosts were
used for executing the VMs, each running up to 15 VMs,
hence the experiment involved up to 60 emulated nodes.

The software installed on each VM contained all the mod-
ules necessary for network emulation, including dynamiQ and
the Status Reporter module. The OLSR routing protocol
used in the emulated network was installed as well.

Table 1: Statistics for the time lag related to dynamiQ.

Time lag [ms] | Min. Avg. Max. Std. dev.
Tcomm 0.33 2.61 | 1003.32 13.62
Tcomp 0.01 0.26 12.82 0.16
Trotatl 0.43 2.87 | 1003.94 13.62

The global framework components, namely the Ezperi-
ment Manager and Mobility Generator were run on another
host. This management host had the same characteristics
and was located in the same local network with the experi-
ment hosts in order to minimize the communication delays.
The Visualizer & User Interface module was run on another
host in the same local network, again so as to minimize the
communication delays.

For experiment purposes we instrumented the dynamiQ
module to measure the two critical time gaps discussed in
Section 5.1: (i) the communication time between the Ez-
periment Manager and dynamiQ, that we denote by Tcomm,
and (ii) the computation time for communication conditions,
denoted by Tcomp. We didn’t consider the communication
delay between the Visualizer & User Interface and the Fzx-
periment Manager since in general it depends on the location
where the experiment takes place; moreover it is not related
to the module on which we currently focus, dynamiQ.

The measurement results, obtained for a typical emulation
experiment with a duration of 10 minutes, are shown in Ta-
ble 1. It can be noticed that the average communication time
is of the order of milliseconds, and its standard deviation is
of about 13 ms. However, large values do occur occasionally,
up to about 1 s, since communication between modules is
done using the HTTP protocol over shared networks. On
the other hand, the computation time in dynamiQ is more
stable, as both the average and standard deviation values
do not exceed 1 ms; occasional larger values are observed,
but they are at most of the order of tens of milliseconds.

We have also calculated the total time lag, Trotar, as the
sum of the above two delays. As expected based on the
discussion above, the total lag is mainly influenced by the
communication time. To demonstrate that large delays oc-
cur very rarely, we plot in Figure 4 the CCDF (Complemen-
tary Cumulative Distribution Function) of Trotei, which is
equal to 1 —CDF, where C DF represents the empirical Cu-
mulative Distribution Function of the total time lag. Thus
we determined that the probability to have a total time gap
exceeding 20 ms is only 0.1%. We consider this acceptable
given the 500 ms time interval between emulation steps.

5.3 Discussion

Scalability can be an issue with systems such as ours.
From the network emulation point of view, we mitigate this
through the distributed execution of dynamiQ, as mentioned
already in Section 5.1. Based on the measurements in Sec-
tion 5.2, we expect the network communication condition
computation to be in the order of a couple of tens of ms at
most even when the system scales by a factor of 10.

From the interactivity point of view, the only solution is
to minimize the network delays between the components of
the system. Our performance evaluation in Section 5.2 has
shown that when all the components are in the same local
network there is no significant issue in this respect. Given
that we only used 5 physical hosts for those measurements,

-4 L L L

200 250

100 150
Total time lag, Tma‘ [ms]

Figure 4: Total time lag for dynamiQ execution (plot-
ted using the CCDF representation).

we expect we could increase system scale by a factor of 10
while keeping all the virtual machines in the same network.

As indicated by our evaluation, the “weak link” in our
system is the communication delay between the Fxperiment
Manager and the rest of the modules. Aside from QoS so-
lutions to ensure that this delay doesn’t exceed predefined
bounds, a possible alternative for demos at remote locations
is to execute the Ezxperiment Manager on the testbed, and
only send graphical content to the remove location (e.g., via
VNC or an equivalent method). The solution of a “portable
testbed” deployed on the demo premises mentioned in Sec-
tion 5.1 is another alternative, although this increases the
deployment cost of the system.

6. CONCLUSIONS

In this paper we have presented an interactive experiment
framework that makes it possible to dynamically control ex-
periment scenarios, typically through direct user input. The
proof-of-concept implementation of the framework used an
Ezxperiment Manager module to drive the entire system, the
dynamiQ module for performing the actual network emula-
tion, and a Visualizer & User Interface module to handle
experiment visualization and user input. Some additional
modules were used to retrieve the network topology from
the running experiment, and to generate mobility traces for
the experiment nodes.

DynamiQ receives control information through the inter-
face with the Ezperiment Manager, then reconfigures the
scenario, recomputes the communication conditions, and ap-
plies them into the experiment network. For the two latter
purposes, dynamiQ leverages the QOMET network emula-

tion set of tools. All these make it possible to provide the
dynamic network emulation functionality required by the
interactive experiment framework.

Our evaluation shows that the time lag introduced through
the use of the dynamiQ module is not significant. Thus, on
our experiment infrastructure, the average communication
and computation time gaps are of the order of milliseconds,
and their standard deviation of the order of at most tens of

milliseconds. Moreover, the probability for the total time
lag to be less than 20 ms is approximately 99.9%. The re-

sults are deemed acceptable given that these time gaps are
considerably smaller than the update time interval of 500
ms used in our emulation experiments.

The current implementation of the interactive experiment
framework has already been used for several demonstrations,
including at Interop Tokyo 2014 and a planned demonstra-
tion at TridentCom 2015. We envisage using these experi-
ences to finalize the design and implementation of the frame-
work, so as it can be made available to interested parties as
an easily-deployable “package”.

7. REFERENCES

[1] R. Beuran, J. Nakata, T. Okada, L. T. Nguyen, Y. Tan,
and Y. Shinoda. A Multi-purpose Wireless Network
Emulator: QOMET. In Proceedings of the 22nd IEEE
International Conference on Advanced Information
Networking and Applications (AINA 2008) Workshops,
FINA 2008 symposium, pages 223-228, 2008.

[2] R. Beuran, L. T. Nguyen, T. Miyachi, J. Nakata,

K. Chinen, Y. Tan, and Y. Shinoda. QOMB: A
Wireless Network Emulation Testbed. In Proceedings of
the IEEE Global Communications Conference
(GLOBECOM 2009), 20009.

[3] M. Carbone and L. Rizzo. Dummynet Revisited. ACM

SIGCOMM Computer Communication Review,

40(2):12-20, 2010.

D. Crockford. IETF RFC 4627: The application/json

Media Type for JavaScript Object Notation (JSON) .

In Internet Requests for Comments, Internet

Engineering Task Force, 2006.

[5] A. Kerénen, J. Ott, and T. Kédrkkédinen. The ONE

Simulator for DTN Protocol Evaluation. In Proceedings

of the 2nd International Conference on Simulation

Tools and Techniques (SIMUTools "09), 2009.

T. Miyachi, K. Chinen, and Y. Shinoda. StarBED and

SpringOS: Large-scale General Purpose Network

Testbed and Supporting Software. In Proceedings of the

Intl. Conf. on Performance FEvaluation Methodologies

and Tools (Valuetools 2006), 2006.

OLSR.org. olsrd: an ad hoc wireless mesh routing

daemon. http://www.olsr.org/.

[8] S. Zaitsev. jsmn: a minimalistic JSON parser in C.
http://zserge.com/jsmn.html.

4

6

[7

