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Abstract—Several choices have to be made during the design 

process of active tag based systems. Since the number of 

properties that must be decided before production and wide-scale 

deployment is relatively high, the use of real experiments in the 

design phase may be prohibitive. We propose the use of 

emulation for performing large-scale experiments with active tag 

based systems easily and in a repeatable manner. Such 

experiments can be used to validate the behavior of the system, 

and to decide the values for various system parameters. We 

illustrate this approach by experimental results obtained with an 

emulation framework that we designed and implemented for a 

pedestrian localization active tag based system. 
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I.  INTRODUCTION 

The design of active tag based systems has several phases 
until a product is ready for mass production. Hardware design 
is usually done in parallel with firmware design, and the system 
is first produced as a prototype. Typically, several parameters 
of the resulting system are configurable, and their values are 
decided by a combination of theoretical analysis and tests done 
using the prototype system. However, for systems with a 
reasonable level of complexity the number of parameter values 
to be decided can be significantly high. In such a case 
exploring the parameter space through repeated real-world 
experiments may be prohibitive. 

In this paper we propose the use of emulation for a 
thorough analysis of the performance and behavior of active 
tag systems in realistic conditions. The pedestrian localization 
system that we emulated uses the data communication and 
processing features of active tags so as to provide to a central 
pedestrian localization engine the information needed to 
automatically calculate the trajectory and the current position 
of the active tag wearer. The setup also includes a number of 
tags with known position: fixed c-tags and gateway c-tags. 
Gateway c-tags can transfer information between them and to 
the outside world using the 802.11j standard. The data provided 
by gateways is used by the pedestrian localization engine. 

Several real-world experiments were carried out by using a 
prototype localization system, as reported in [1]. The 
experiment consisted in the orchestrated movement, both 
indoors and outdoors, of 16 pedestrians wearing prototype tags, 

which are nicknamed communication tag, or c-tag. A series of 
hindrances were identified during the real-world trials, such as: 
(i) battery depletion was relatively fast and caused signal to 
weaken during and between experiments; (ii) orchestrating a 
real-world trial using even as few as 16 people was time 
consuming: a 15-minute trial needed hours of preparation. 

This motivated the design and implementation of an 
alternative experiment platform using emulation, intended for 
the system design and development phases. This platform is 
based on existing tools, namely the wireless network emulator 
QOMET [2], and the experiment-support software RUNE [3]. 
Our emulation platform uses a distributed approach to achieve 
scalability for live execution of large scenarios. 

Active tags were so far mainly studied through simulation 
(e.g., [4]). Some of the experiment tools for ubiquitous systems 
focus on the operating system level, such as TOSSIM [5], 
which is a TinyOS simulator. ATEMU [6] is able to emulate 
TinyOS applications at processor level. The manufacturer of 
the active tag processor (microcontroller) used in our 
prototype, Microchip, only provides two alternatives for system 
development: real-time emulation in hardware, or processor 
simulation [7]. Since none of these solutions are appropriate for 
our purpose, we developed our own real-time processor 
emulator running on standard PCs. Wireless communication 
emulation is currently mainly done in relation to WLANs. 
TWINE [8] uses computer models for performing real-time 
experiments so as to avoid undesired interferences and side 
effects. QOMET uses a similar approach, and we extended it so 
as to meet active tag communication emulation requirements. 

An initial version of our emulation system was presented in 
[9]. Here we review the main system properties and 
improvements, and give a thorough description of how the 
emulation system was used for making design choices for the 
active tag based pedestrian localization system. 

II. EMULATION FRAMEWORK 

We use the technique of emulation to carry out experiments 
in a wide-range of controllable conditions, and in a repeatable 
manner. This implies creating a virtual environment in which 
the movement of pedestrians, the communication, and the 
behavior of active tags are reproduced in real time. Our system 
makes it possible to run the active tag firmware in such an 
emulation environment. 
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A. System Overview 

Our system is run in a distributed manner using the 
experiment-support software RUNE (Real-time Ubiquitous 
Network Emulation environment) [3]. The experiment itself is 
performed using standard PCs that are part of StarBED, the 
large-scale network experiment environment at the Hokuriku 
Research Center, National Institute of Information and 
Communications Technology (NICT), in Ishikawa, Japan [10]. 
The software described in this paper can be downloaded from 
the following location: http://www.starbed.org/download/. 

The pedestrian localization prototype system that we 
emulated uses AYID32305 tags from Ymatic Corporation, also 
known under the name S-NODE [11]. S-NODEs use as 
processing unit the PIC16LF627A microcontroller with a 
frequency of 4 MHz. The wireless transceiver of the prototype 
system operates at 303.2 MHz, and the data rate is 4800 bps 
(Manchester encoding), which results in an effective data rate 
of 2400 bps. According to Ymatic Corporation, the error-free 
communication range of S-NODEs is 3-5 m depending on the 
antenna used. These tags are emulated in our testbed both from 
the point of view of the wireless communication, and also at 
processor level. 

B. Wireless Communication Emulation 

The active tags employed in the pedestrian localization 
experiment use wireless communication to exchange 
information with each other. We extended the WLAN emulator 
QOMET [2] to support the wireless transceiver used by active 
tags, a task facilitated by its modular architecture. Our current 
model for active tag communication establishes the relationship 
between the distance between two nodes (a real-world scenario 
parameter) and the Frame Error Rate (FER, a data link layer 
parameter). This conversion is done based on measurements we 
carried out in an RF shielded room with a helicoidal antenna. 

We modeled the FER versus distance dependency by fitting 
a second degree equation on the measurement results, done 
with 4-byte payload packets. Furthermore, in order to extend 
the communication range of the wireless network model, we 
further introduced the constant C, a scaling factor, as shown in 
equation (1). Note that the FER given by equation (1) must be 
scaled accordingly for frames with payloads other than 4 bytes, 
and must be limited to a maximum value of 1, since it 
represents a probability. 









+−

<

=

.,0371.0

/1758.0)/(1096.0

;5.0/,0

)( 2

4

otherwise

CdCd

mCdif

dFER  (1) 

For active tags, FER is the only communication parameter 
that needs to be computed. FER is equivalent to packet loss in 
the absence of a network layer. Communication delay and 
bandwidth limitation are directly recreated in the data 
transmission & reception process, hence they need not be 
emulated. 

Given that the active tags are not generating IP traffic, we 
could not use a wired-network emulator for introducing 
network layer effects to traffic, as previously done when using 

QOMET [2]. Therefore we implemented a channel emulation 
system, named chanel (CHANnel Emulation Library). The 
main role of chanel is to recreate scenario-specific 
communication conditions based on the FER probabilities 
computed by QOMET. This function is similar to that of any 
wired-network emulator, such as dummynet [12]. A second 
function of chanel is to make sure the data is communicated to 
all the systems that would receive it during the corresponding 
real-world wireless scenario. 

C. Processor Emulation 

One of the advantages of network emulation is that already-
existing network applications can be studied through this 
approach so as to evaluate their performance characteristics. 
Although this is relatively easy for typical network applications 
that run on PCs, the task is more complex when the network 
application runs on a special processor. In order to run the 
active tag application unmodified on our system, we emulated 
the active tag processor so that the same firmware that runs on 
active tags can be run in our emulated environment without any 
modification, nor recompilation. 

When emulating active tag applications such as ours it is 
important to introduce cycle-accurate processor emulation. In 
our case active tags use the time information contained in 
messages to synchronize with each others autonomously. 
Incorrect time information may introduce problems, such as 
time desynchronization, and potentially communication errors, 
therefore it must be avoided. We tackle this issue implicitly by 
our distributed emulation approach: each PC in our testbed has 
to emulate only a few active tags; therefore we could achieve 
live emulation execution for over 130 active tags. 

The processor emulation module is responsible for: 

• Instruction execution emulation: all needed PIC 
instructions are supported by our processor emulator; 

• Data I/O emulation: the only I/O access method used 
by the active tag application is USART (Universal 
Synchronous Asynchronous Receiver Transmitter); 

• Interrupt emulation: all interrupts necessary for the 
active tag application are supported. 

III. EMULATION EXPERIMENTS 

We performed several emulation experiments on StarBED 
with the system that we developed. Some experiments focused 
on analyzing and extending the 16 pedestrian prototype trials 
carried out by Panasonic [1]. Other experiments aimed at 
validating our system by comparing the results obtained in an 
outdoor real-world trial with 2 pedestrians, and an equivalent 
emulation experiment on StarBED. In both these cases we 
could compare the results of the real experiments and those of 
emulation. We also made several experiments that were 
performed exclusively through emulation, such as several 
100-pedestrian scenarios in a virtual environment representing 
a 300 x 300 m area in Kawasaki city (pedestrian motion 
patterns were created using a realistic pedestrian trajectory 
generator that we designed and implemented). Experiments 
with 100 pedestrians–a total of over 130 emulated tags–are an 



important achievement, since such experiments could not have 
been done easily as real-world trials. 

In this paper we show some experimental results obtained 
in the 16-pedestrian and 2-pedestrian experiments that illustrate 
the usability of our approach. These results show how our 
emulation system can be used in the design process of the 
active tag based pedestrian localization system. The time 
granularity used when computing communication conditions 
and during real-time execution was of 0.5 s. RUNE was used to 
configure the host PCs and to run the experiment. 

For the 16-pedestrian experiments, the initial positions of 
the pedestrians and their movement, the locations of the 4 fixed 
c-tags and 3 gateway c-tags, and the building topology were all 
described by converting the real-world experiment information 
to QOMET scenario description. Some emulation experiments 
were intended to analyze the influence of communication range 
on localization accuracy. Transmission range was modeled in 
our system by using equation (1), and it can be varied in the 
real active tag system by configuring the transmission power. 
Communication range is an important parameter, since it is in a 
direct relationship with power consumption, hence with 
operating time. 

The results shown in Fig. 1 were obtained by considering 5 
transmission ranges, between 3m and 15 m in increments of 3 
m. The mean localization error shown in the figure is the 
average for all pedestrians; a series of 3 experiments was done 
for each transmission range. It can be seen that transmission 
range influence localization error, and an optimum is achieved 
for 9 m communication range. Although it was known that 
smaller ranges introduce errors because of a smaller 
communication probability, and larger ranges introduce errors 
because of the imprecision induced by a larger coverage area of 
each tag, the optimum value of the transmission range was not 
known. Determining this optimum value was relatively easy to 
be done by emulation compared to the alternative of making 
real-world experiments. 

 

Figure 1.  Mean localization error versus transmission range. 

The c-tag protocol employs time-division multiplexing. 
Another parameter that we studied for the 16-pedestrian 
experiments was the number of communication slots in the 
time-division multiplexing scheme that provides the best 
overall localization performance. The prototype active tag 

system used 9 slots for communication, preceded and followed 
by one guard slot. During emulation, for two communication 
ranges, 3 m and 9 m respectively, we configured the active tag 
firmware to use 3, 6, and 9 communication slots.  

Fig. 2 shows that there is a performance gain when 
increasing the number of slots, but this gain is not so evident 
for the 3 m range, since the communication opportunities are 
rather low compared to the case of the 9 m range. For 9 m 
range, the advantage of using more than 3 slots is quite visible, 
and an optimum performance level seems to be reached for 6 
slots already. The advantage of using a smaller number of slots 
is that the active duration of the tag is decreased, and therefore 
battery life is potentially increased by 30% (when using 6 
slots), or even by more than 50% (when using 3 slots). The 
disadvantage is that, when several tags want to communicate 
with each other, a smaller number of slots available for 
communication leads to a higher collision rate, and impedes 
information exchanges. From Fig. 2 we conclude that for 3 m 
communication range 9 slots have to be used to get the best 
performance, but in the case of 9 m communication range 
performance is significantly increased even if using only 6 
slots, therefore a 30% battery life increase could be achieved. 

 
Figure 2.  Mean localization error versus the number of slots used in time-

multiplexed communication. 

The c-tags create records of their meetings with other c-tags 
and store them in the internal memory until the records can be 
uploaded to an encountered gateway. Due to memory 
limitations (only 16 records can be stored), the meetings that 
occur within a certain time period are merged in a unique 
record. The length of this time period is controlled by a 
parameter that indicates this duration in units equal to c-tag 
time intervals. For the default transmission frequency and 
number of slots in the time-multiplexed communication, one c-
tag time interval is equal to approximately 2 s. For example, if 
the number of time intervals for which merging occurs is 1 
(0x01 in hexadecimal), the ids of all tags met during 
approximately 2 s are merged into one record. However, if the 
number is 31 (0x1F in hexadecimal), all the ids of the tags met 
during the corresponding 62 s period become one record. Using 
longer time periods allows for storing more records, but the 
accuracy of identifying the time (and therefore the place) where 
a meeting event occurred decreases. On the other hand, a 
shorter time period for merging increases both accuracy 
localization accuracy and memory utilization. Records are 



deleted in chronological order when memory becomes full, 
hence c-tag meeting history is lost. Depending on applications 
and deployment topologies, a trade-off must be made between 
memory usage and localization accuracy by selecting the 
appropriate value of the time interval used for merging.  

Fig. 3 shows the results of the investigation we did for 
different values of the merging time period in the case of a 2-
pedestrian experiment. The motion pattern in this experiment 
was relatively simple, following a T-shape trajectory with fixed 
tags and gateways placed at the trajectory ends and 
intersections. We show the average localization error in 3 
experiments for each of the two pedestrians and for 5 different 
values of the number of time intervals used for merging. 

The results in Fig. 3 indicate that for more than 7 time 
periods (approximately 14 s) good accuracy is obtained; as 
expected, and localization error decreases as the number of 
time intervals used when merging is smaller. However, for 
values of 3 or 1, the memory becomes insufficient for storing 
all the information until the tags arrive at the gateway located 
at the destination. This makes localization error increase 
sharply. In this experiment, by using emulation it was possible 
to determine, given a certain amount of memory, what is the 
optimum value of the number of time intervals used during 
merging in order to achieve best localization performance. 

 
Figure 3.  Mean localization error versus of the number of time intervals used 

for merging tag information. 

IV. CONCLUSION 

We presented our approach of using emulation in the design 
and development phase of active tag based systems. We 
illustrated this approach by a detailed discussion of the 
emulation framework that we developed for a pedestrian 
localization system using active tags. Our framework is 
currently used by Panasonic for the development of the 
pedestrian localization system, and to simplify the 
implementation and testing procedures of the localization 
engine. Employing this approach in the development phase is 
significantly more flexible and versatile than making 
real-world experiments, and helps reducing the number of 
real-world trials that must be carried out with the prototype 

system. This allows a faster product development cycle, and a 
quicker time to market. 

In our experimental platform emulation plays an essential 
role at two points: (i) recreate in real time the wireless 
communication conditions between active tags using a simple 
frame error rate versus distance model; (ii) emulate in real time 
the active tag processor so that firmware can be run directly, 
without modification or recompilation. Recreating realistic 
experimental conditions makes it possible to validate the 
behavior of the system in a wide range of scenarios. In addition, 
one may explore with relative ease the parameter space of the 
system under test, so as to determine the optimum values of the 
parameters that produce the best overall performance under 
specific conditions and scenarios. 

Our future work has several directions, such as: (i) improve 
the scalability of the system to enable emulation experiments 
with pedestrian groups as large as 1000; (ii) improve the 
realism of the wireless communication emulation by using 
more accurate models for electromagnetic propagation. 
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