
Distributed Emulation for the Design of

Active Tag Based Systems

Abstract—Several choices have to be made during the design

process of active tag based systems. Since the number of

properties that must be decided before production and wide-scale

deployment is relatively high, the use of real experiments in the

design phase may be prohibitive. We propose the use of

emulation for performing large-scale experiments with active tag

based systems easily and in a repeatable manner. Such

experiments can be used to validate the behavior of the system,

and to decide the values for various system parameters. We

illustrate this approach by experimental results obtained with an

emulation framework that we designed and implemented for a

pedestrian localization active tag based system.

Keywords—active tag system; distributed execution; wireless

network emulation; processor emulation; pedestrian localization

I. INTRODUCTION

The design of active tag based systems has several phases
until a product is ready for mass production. Hardware design
is usually done in parallel with firmware design, and the system
is first produced as a prototype. Typically, several parameters
of the resulting system are configurable, and their values are
decided by a combination of theoretical analysis and tests done
using the prototype system. However, for systems with a
reasonable level of complexity the number of parameter values
to be decided can be significantly high. In such a case
exploring the parameter space through repeated real-world
experiments may be prohibitive.

In this paper we propose the use of emulation for a
thorough analysis of the performance and behavior of active
tag systems in realistic conditions. The pedestrian localization
system that we emulated uses the data communication and
processing features of active tags so as to provide to a central
pedestrian localization engine the information needed to
automatically calculate the trajectory and the current position
of the active tag wearer. The setup also includes a number of
tags with known position: fixed c-tags and gateway c-tags.
Gateway c-tags can transfer information between them and to
the outside world using the 802.11j standard. The data provided
by gateways is used by the pedestrian localization engine.

Several real-world experiments were carried out by using a
prototype localization system, as reported in [1]. The
experiment consisted in the orchestrated movement, both
indoors and outdoors, of 16 pedestrians wearing prototype tags,

which are nicknamed communication tag, or c-tag. A series of
hindrances were identified during the real-world trials, such as:
(i) battery depletion was relatively fast and caused signal to
weaken during and between experiments; (ii) orchestrating a
real-world trial using even as few as 16 people was time
consuming: a 15-minute trial needed hours of preparation.

This motivated the design and implementation of an
alternative experiment platform using emulation, intended for
the system design and development phases. This platform is
based on existing tools, namely the wireless network emulator
QOMET [2], and the experiment-support software RUNE [3].
Our emulation platform uses a distributed approach to achieve
scalability for live execution of large scenarios.

Active tags were so far mainly studied through simulation
(e.g., [4]). Some of the experiment tools for ubiquitous systems
focus on the operating system level, such as TOSSIM [5],
which is a TinyOS simulator. ATEMU [6] is able to emulate
TinyOS applications at processor level. The manufacturer of
the active tag processor (microcontroller) used in our
prototype, Microchip, only provides two alternatives for system
development: real-time emulation in hardware, or processor
simulation [7]. Since none of these solutions are appropriate for
our purpose, we developed our own real-time processor
emulator running on standard PCs. Wireless communication
emulation is currently mainly done in relation to WLANs.
TWINE [8] uses computer models for performing real-time
experiments so as to avoid undesired interferences and side
effects. QOMET uses a similar approach, and we extended it so
as to meet active tag communication emulation requirements.

An initial version of our emulation system was presented in
[9]. Here we review the main system properties and
improvements, and give a thorough description of how the
emulation system was used for making design choices for the
active tag based pedestrian localization system.

II. EMULATION FRAMEWORK

We use the technique of emulation to carry out experiments
in a wide-range of controllable conditions, and in a repeatable
manner. This implies creating a virtual environment in which
the movement of pedestrians, the communication, and the
behavior of active tags are reproduced in real time. Our system
makes it possible to run the active tag firmware in such an
emulation environment.

Razvan Beuran
1,2

, Junya Nakata
1,2

, Takashi Okada
2,1

, Tetsuya Kawakami
3
,

Ken-ichi Chinen
2,1

, Yasuo Tan
2,1

, Yoichi Shinoda
2,1

1
 National Institute of Information and Communications Technology, Ishikawa, Japan

2
 Japan Advanced Institute of Science and Technology, Ishikawa, Japan

3
 Panasonic Corporation, Kanagawa, Japan

A. System Overview

Our system is run in a distributed manner using the
experiment-support software RUNE (Real-time Ubiquitous
Network Emulation environment) [3]. The experiment itself is
performed using standard PCs that are part of StarBED, the
large-scale network experiment environment at the Hokuriku
Research Center, National Institute of Information and
Communications Technology (NICT), in Ishikawa, Japan [10].
The software described in this paper can be downloaded from
the following location: http://www.starbed.org/download/.

The pedestrian localization prototype system that we
emulated uses AYID32305 tags from Ymatic Corporation, also
known under the name S-NODE [11]. S-NODEs use as
processing unit the PIC16LF627A microcontroller with a
frequency of 4 MHz. The wireless transceiver of the prototype
system operates at 303.2 MHz, and the data rate is 4800 bps
(Manchester encoding), which results in an effective data rate
of 2400 bps. According to Ymatic Corporation, the error-free
communication range of S-NODEs is 3-5 m depending on the
antenna used. These tags are emulated in our testbed both from
the point of view of the wireless communication, and also at
processor level.

B. Wireless Communication Emulation

The active tags employed in the pedestrian localization
experiment use wireless communication to exchange
information with each other. We extended the WLAN emulator
QOMET [2] to support the wireless transceiver used by active
tags, a task facilitated by its modular architecture. Our current
model for active tag communication establishes the relationship
between the distance between two nodes (a real-world scenario
parameter) and the Frame Error Rate (FER, a data link layer
parameter). This conversion is done based on measurements we
carried out in an RF shielded room with a helicoidal antenna.

We modeled the FER versus distance dependency by fitting
a second degree equation on the measurement results, done
with 4-byte payload packets. Furthermore, in order to extend
the communication range of the wireless network model, we
further introduced the constant C, a scaling factor, as shown in
equation (1). Note that the FER given by equation (1) must be
scaled accordingly for frames with payloads other than 4 bytes,
and must be limited to a maximum value of 1, since it
represents a probability.









+−

<

=

.,0371.0

/1758.0)/(1096.0

;5.0/,0

)(2

4

otherwise

CdCd

mCdif

dFER (1)

For active tags, FER is the only communication parameter
that needs to be computed. FER is equivalent to packet loss in
the absence of a network layer. Communication delay and
bandwidth limitation are directly recreated in the data
transmission & reception process, hence they need not be
emulated.

Given that the active tags are not generating IP traffic, we
could not use a wired-network emulator for introducing
network layer effects to traffic, as previously done when using

QOMET [2]. Therefore we implemented a channel emulation
system, named chanel (CHANnel Emulation Library). The
main role of chanel is to recreate scenario-specific
communication conditions based on the FER probabilities
computed by QOMET. This function is similar to that of any
wired-network emulator, such as dummynet [12]. A second
function of chanel is to make sure the data is communicated to
all the systems that would receive it during the corresponding
real-world wireless scenario.

C. Processor Emulation

One of the advantages of network emulation is that already-
existing network applications can be studied through this
approach so as to evaluate their performance characteristics.
Although this is relatively easy for typical network applications
that run on PCs, the task is more complex when the network
application runs on a special processor. In order to run the
active tag application unmodified on our system, we emulated
the active tag processor so that the same firmware that runs on
active tags can be run in our emulated environment without any
modification, nor recompilation.

When emulating active tag applications such as ours it is
important to introduce cycle-accurate processor emulation. In
our case active tags use the time information contained in
messages to synchronize with each others autonomously.
Incorrect time information may introduce problems, such as
time desynchronization, and potentially communication errors,
therefore it must be avoided. We tackle this issue implicitly by
our distributed emulation approach: each PC in our testbed has
to emulate only a few active tags; therefore we could achieve
live emulation execution for over 130 active tags.

The processor emulation module is responsible for:

• Instruction execution emulation: all needed PIC
instructions are supported by our processor emulator;

• Data I/O emulation: the only I/O access method used
by the active tag application is USART (Universal
Synchronous Asynchronous Receiver Transmitter);

• Interrupt emulation: all interrupts necessary for the
active tag application are supported.

III. EMULATION EXPERIMENTS

We performed several emulation experiments on StarBED
with the system that we developed. Some experiments focused
on analyzing and extending the 16 pedestrian prototype trials
carried out by Panasonic [1]. Other experiments aimed at
validating our system by comparing the results obtained in an
outdoor real-world trial with 2 pedestrians, and an equivalent
emulation experiment on StarBED. In both these cases we
could compare the results of the real experiments and those of
emulation. We also made several experiments that were
performed exclusively through emulation, such as several
100-pedestrian scenarios in a virtual environment representing
a 300 x 300 m area in Kawasaki city (pedestrian motion
patterns were created using a realistic pedestrian trajectory
generator that we designed and implemented). Experiments
with 100 pedestrians–a total of over 130 emulated tags–are an

important achievement, since such experiments could not have
been done easily as real-world trials.

In this paper we show some experimental results obtained
in the 16-pedestrian and 2-pedestrian experiments that illustrate
the usability of our approach. These results show how our
emulation system can be used in the design process of the
active tag based pedestrian localization system. The time
granularity used when computing communication conditions
and during real-time execution was of 0.5 s. RUNE was used to
configure the host PCs and to run the experiment.

For the 16-pedestrian experiments, the initial positions of
the pedestrians and their movement, the locations of the 4 fixed
c-tags and 3 gateway c-tags, and the building topology were all
described by converting the real-world experiment information
to QOMET scenario description. Some emulation experiments
were intended to analyze the influence of communication range
on localization accuracy. Transmission range was modeled in
our system by using equation (1), and it can be varied in the
real active tag system by configuring the transmission power.
Communication range is an important parameter, since it is in a
direct relationship with power consumption, hence with
operating time.

The results shown in Fig. 1 were obtained by considering 5
transmission ranges, between 3m and 15 m in increments of 3
m. The mean localization error shown in the figure is the
average for all pedestrians; a series of 3 experiments was done
for each transmission range. It can be seen that transmission
range influence localization error, and an optimum is achieved
for 9 m communication range. Although it was known that
smaller ranges introduce errors because of a smaller
communication probability, and larger ranges introduce errors
because of the imprecision induced by a larger coverage area of
each tag, the optimum value of the transmission range was not
known. Determining this optimum value was relatively easy to
be done by emulation compared to the alternative of making
real-world experiments.

Figure 1. Mean localization error versus transmission range.

The c-tag protocol employs time-division multiplexing.
Another parameter that we studied for the 16-pedestrian
experiments was the number of communication slots in the
time-division multiplexing scheme that provides the best
overall localization performance. The prototype active tag

system used 9 slots for communication, preceded and followed
by one guard slot. During emulation, for two communication
ranges, 3 m and 9 m respectively, we configured the active tag
firmware to use 3, 6, and 9 communication slots.

Fig. 2 shows that there is a performance gain when
increasing the number of slots, but this gain is not so evident
for the 3 m range, since the communication opportunities are
rather low compared to the case of the 9 m range. For 9 m
range, the advantage of using more than 3 slots is quite visible,
and an optimum performance level seems to be reached for 6
slots already. The advantage of using a smaller number of slots
is that the active duration of the tag is decreased, and therefore
battery life is potentially increased by 30% (when using 6
slots), or even by more than 50% (when using 3 slots). The
disadvantage is that, when several tags want to communicate
with each other, a smaller number of slots available for
communication leads to a higher collision rate, and impedes
information exchanges. From Fig. 2 we conclude that for 3 m
communication range 9 slots have to be used to get the best
performance, but in the case of 9 m communication range
performance is significantly increased even if using only 6
slots, therefore a 30% battery life increase could be achieved.

Figure 2. Mean localization error versus the number of slots used in time-

multiplexed communication.

The c-tags create records of their meetings with other c-tags
and store them in the internal memory until the records can be
uploaded to an encountered gateway. Due to memory
limitations (only 16 records can be stored), the meetings that
occur within a certain time period are merged in a unique
record. The length of this time period is controlled by a
parameter that indicates this duration in units equal to c-tag
time intervals. For the default transmission frequency and
number of slots in the time-multiplexed communication, one c-
tag time interval is equal to approximately 2 s. For example, if
the number of time intervals for which merging occurs is 1
(0x01 in hexadecimal), the ids of all tags met during
approximately 2 s are merged into one record. However, if the
number is 31 (0x1F in hexadecimal), all the ids of the tags met
during the corresponding 62 s period become one record. Using
longer time periods allows for storing more records, but the
accuracy of identifying the time (and therefore the place) where
a meeting event occurred decreases. On the other hand, a
shorter time period for merging increases both accuracy
localization accuracy and memory utilization. Records are

deleted in chronological order when memory becomes full,
hence c-tag meeting history is lost. Depending on applications
and deployment topologies, a trade-off must be made between
memory usage and localization accuracy by selecting the
appropriate value of the time interval used for merging.

Fig. 3 shows the results of the investigation we did for
different values of the merging time period in the case of a 2-
pedestrian experiment. The motion pattern in this experiment
was relatively simple, following a T-shape trajectory with fixed
tags and gateways placed at the trajectory ends and
intersections. We show the average localization error in 3
experiments for each of the two pedestrians and for 5 different
values of the number of time intervals used for merging.

The results in Fig. 3 indicate that for more than 7 time
periods (approximately 14 s) good accuracy is obtained; as
expected, and localization error decreases as the number of
time intervals used when merging is smaller. However, for
values of 3 or 1, the memory becomes insufficient for storing
all the information until the tags arrive at the gateway located
at the destination. This makes localization error increase
sharply. In this experiment, by using emulation it was possible
to determine, given a certain amount of memory, what is the
optimum value of the number of time intervals used during
merging in order to achieve best localization performance.

Figure 3. Mean localization error versus of the number of time intervals used

for merging tag information.

IV. CONCLUSION

We presented our approach of using emulation in the design
and development phase of active tag based systems. We
illustrated this approach by a detailed discussion of the
emulation framework that we developed for a pedestrian
localization system using active tags. Our framework is
currently used by Panasonic for the development of the
pedestrian localization system, and to simplify the
implementation and testing procedures of the localization
engine. Employing this approach in the development phase is
significantly more flexible and versatile than making
real-world experiments, and helps reducing the number of
real-world trials that must be carried out with the prototype

system. This allows a faster product development cycle, and a
quicker time to market.

In our experimental platform emulation plays an essential
role at two points: (i) recreate in real time the wireless
communication conditions between active tags using a simple
frame error rate versus distance model; (ii) emulate in real time
the active tag processor so that firmware can be run directly,
without modification or recompilation. Recreating realistic
experimental conditions makes it possible to validate the
behavior of the system in a wide range of scenarios. In addition,
one may explore with relative ease the parameter space of the
system under test, so as to determine the optimum values of the
parameters that produce the best overall performance under
specific conditions and scenarios.

Our future work has several directions, such as: (i) improve
the scalability of the system to enable emulation experiments
with pedestrian groups as large as 1000; (ii) improve the
realism of the wireless communication emulation by using
more accurate models for electromagnetic propagation.

REFERENCES

[1] Y. Suzuki, T. Kawakami, M. Yokobori, K. Miyamoto, “A Real-Space
Network Using Bi-Directional Communication Tags – Pedestrian
Localization Technique and Prototype Evaluation”, IEICE Forum on
Ubiquitous and Sensor Networks, tech. report, October 30-31, 2007.

[2] R. Beuran, L. T. Nguyen, K. T. Latt, J. Nakata, Y. Shinoda, “QOMET:
A Versatile WLAN Emulator”, IEEE 21st Int. Conf. AINA-07, Niagara
Falls, Ontario, Canada, May 21-23, 2007, pp. 348-353.

[3] J. Nakata, T. Miyachi, R. Beuran, K. Chinen, S. Uda, K. Masui, Y. Tan,
Y. Shinoda, “StarBED2: Large-scale, Realistic and Real-time Testbed
for Ubiquitous Networks”, TridentCom 2007, Orlando, Florida, U.S.A.,
May 21-23, 2007.

[4] A. Janek, Ch. Trummer, Ch. Steger, R. Weiss, J. Preishuber-Pfluegl, M.
Pistauer, “Simulation Based Verification of Energy Storage
Architectures for Higher Class Tags supported by Energy Harvesting
Devices”, Conf. on Digital System Design Architectures, Methods and
Tools (DSD 2007), Lubeck, Germany, Aug. 29-31, 2007, pp. 463-462.

[5] P. Levis, N. Lee, M. Welsh, D. Culler, “TOSSIM: Accurate and Scalable
Simulation of Entire TinyOS Applications”, Proc. of the First ACM

Conference on Embedded Networked Sensor Systems (SenSys’03), Los
Angeles, California, U.S.A., November 5-7, 2003.

[6] J. Polley, D. Blazakis, J. McGee, D. Rusk, J. S. Baras, “ATEMU: A
Fine-grained Sensor Network Simulator”, Proc. of the First IEEE

Communications Society Conference on Sensor and Ad Hoc

Communications and Networks (SECON 2004), Santa Clara, California,
U.S.A., October 4-7, 2004.

[7] Microchip Technology, Inc., http://www.microchip.com/.

[8] J. Zhou, Z. Ji, R. Bagrodia, “TWINE: A Hybrid Emulation Testbed for
Wireless Networks and Applications”, IEEE INFOCOM 2006,
Barcelona, Spain, April 23-29, 2006.

[9] R. Beuran, J. Nakata, Y. Suzuki, T. Kawakami, K. Chinen, Y. Tan, Y.
Shinoda, “Active Tag Emulation for Pedestrian Localization
Applications”, 5th International Conference on Networked Sensing
Systems (INSS08), Kanazawa, Ishikawa, Japan, June 17-19, 2008, pp.
55-58.

[10] T. Miyachi, K. Chinen, Y. Shinoda, “Automatic Configuration and
Execution of Internet Experiments on an Actual Node-based Testbed”,
Proc. of Tridentcom 2005, Trento, Italy, February 2005, pp. 274-282.

[11] Ymatic, Inc., http://www.ymatic.co.jp.

[12] L. Rizzo, “Dummynet FreeBSD network emulator”,
http://info.iet.unipi.it/~luigi/ip_dummynet/.

