
Fault Injection on a Large-Scale Network Testbed

Toshiyuki Miyachi
NICT†

4-2-1 Nukui-Kitamachi
Koganei, Tokyo, Japan
miyachi@nict.go.jp

Razvan Beuran
NICT†

4-2-1 Nukui-Kitamachi
Koganei, Tokyo, Japan
razvan@nict.go.jp

Shinsuke Miwa
NICT†

4-2-1 Nukui-Kitamachi
Koganei, Tokyo, Japan
danna@nict.go.jp

Yoshiki Makino
NICT†

4-2-1 Nukui-Kitamachi
Koganei, Tokyo, Japan
ymakino@nict.go.jp

Satoshi Uda
JAIST§

1-1 Asahidai, Nomi
Ishikawa, Japan
zin@jaist.ac.jp

Yasuo Tan
JAIST§

1-1 Asahidai, Nomi
Ishikawa, Japan

ytan@jaist.ac.jp

ABSTRACT
In the real Internet, various types of problems are encoun-
tered. Before integrating new technologies into the Inter-
net, developers should understand the behavior of these tech-
nologies in the event of fault occurrence. Researchers con-
duct experiments on network testbeds to evaluate new tech-
nologies, but the main focus of the evaluations done so far
has been to study the technologies’ behavior in healthy situ-
ations.

Currently, there are many network testbeds available. We
developed and currently operate StarBED, an actual node-
based network testbed. In this paper, we discuss method-
ologies to introduce faults into an experimental environment
using an actual node-based network testbed. Then, we show
two case studies of fault injection into our experimental en-
vironments on StarBED.

Categories and Subject Descriptors
C.2.3 [Network Operations]: [Network management,Network
monitoring]

General Terms
Experimentation

†National Institute of Information and Communications Technol-
ogy
§Japan Advanced Institute of Science and Technology

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AINTEC’11, November 9–11, 2011, Bangkok, Thailand.
Copyright 2011 ACM 978-1-4503-1062-8/11/11 ...$10.00.

Keywords
Fault Injection, Network Testbed

1. INTRODUCTION
Network technologies have been merged into many ele-

ments of our daily lives, and there are many important ser-
vices on the Internet. As the Internet grows, many new ser-
vices and improvements for the Internet are being proposed,
one after another. In order to keep these services and the
Internet itself healthy, evaluations of the new proposals are
important.

Evaluations of network technologies are conducted uti-
lizing several methodologies, including various simulations
and emulations. However, in many cases, the main focus
of these evaluations so far has been to study the behavior of
target technologies in healthy situations. Evaluating the scal-
ability or performance of the target technologies themselves
is, of course, important, but studying their behavior in crit-
ical situations is also important for understanding problems
with surrounding services and the target technology itself.

We have three motivations for injecting faults into experi-
mental environments:

• The first motivation is that we want to construct realis-
tic experimental environments. StarBED[6][8] is a net-
work testbed based on actual nodes. It has over 1,000
PC nodes and network equipments devoted only to net-
work experiments. The purpose of StarBED is to eval-
uate implemented software and hardware in real envi-
ronments. Trouble in a real environment is not rare, so
it is necessary to inject faults to realistically simulate
or emulate the Internet.

• The second motivation is that we would like to study
the behaviors of target technologies or environments in
critical or emergent situations. Experiences in recover-
ing new technologies in trouble is indispensable for en-
abling quick recovery in a real situation. Thus, study-

4

ing how experimental environments will break in crit-
ical or emergent situations is useful for solving prob-
lems in a real environment. These information is also
useful for revise their specifications or implementa-
tions.

• The third motivation arises from a characteristic of ex-
perimental environments. In evaluation environments
that are isolated from real environments, experimenters
can measure all of a technology’s elements and do any-
thing to them. This means that we can introduce inten-
tional problems in these environments and measure all
of their influences on the technology’s operations. This
is not allowed in a real environment.

In this paper, we discuss network trouble in the Internet
and propose ways to reproduce situations that include these
problems, especially in actual node-based network testbed.
Then, we show two case studies of fault injection on StarBED.

2. NETWORK FAULTS
In this section, we describe the target network faults in this

work and their characteristics. We premise target technology
evaluations that can be performed in a small experimental
environment are already finished; StarBED is for evaluating
a technology’s behavior on a large-scale network. Moreover,
we do not focus on compile-time injection, because our pol-
icy on StarBED is to evaluate a running implementation in a
real environment.

2.1 Areas of Failure
Network faults occur in four areas in physical piece of

equipments as shown in Table 1. These faults can occur in
their implementation and configuration parts. The imple-
mentation includes both software and hardware. Errors in
physical equipment are caused by unexpected physical ef-
fects. Specification errors come from design bugs including
mistakes in understanding the target environment, scale, and
so on. Implementation errors came from bugs in implement-
ing the standard in hardware or software. Configuration er-
rors are problems that are not in the implementation itself.
The methods of evaluating these errors should be different.

2.2 Faults in Each Protocol Layer
In the previous section, we described the areas in which

faults occur. These faults can be located in all of the protocol
layers, and the technologies’ behavior should be different
depending on layer in which the faults occur. Table 2 lists
faults in each layer. The role of the protocol is to provide
connections in each layer, so when the protocol has trouble
the connection quality is degraded.

When a server application dies, only its service will be-
come unavailable, and other services on the physical ma-
chine will remain available. When a machine has a problem
in its protocol stack, elements in lower layers can commu-
nicate but those in upper layers cannot communicate cor-

Table 1: Area in Which Fault Occur
Area of Failure Description
Physical Hardware errors in PCs, network
equipments equipment, and cables
Specifications Hardware and software bugs in the

standards in large-scale environments
Implementations Hardware and software bugs in

implementations in large-scale
environments

Configurations Hardware and software configuration
errors in large-scale environments

Table 2: Failures in TCP/IP Protocol Layers
Layer Failure Examples
Physical Damaged cables
and Loose terminal connections
Data Link Inappropriate light strength (fiber)

Incorrect cable connections
Broken network interfaces
Connection loops
Bugs in specifications or implementations
Disconnected VLAN
Interference (wireless)

Network Missing route
Route flap
IP address misconfigurations
Firewall misconfigurations
Bug in specifications or implementations

Transport Bugs in specifications or implementations
Misconfigurations of protocol

Application Misconfigurations of applications
Bugs in specifications or implementations

rectly. All of under-layer faults of a layer will be shown as
almost the same symptom. The roles or functions of appli-
cation software above the application layer are variable, so
the symptoms are also different depending on the software
purposes.

2.3 Locations of Faults
Problems occurring on end nodes are described in sec-

tion 2.2. However, faults can occur everywhere in the net-
work, and the fault should be shown differently according to
the observer’s location. This section describes the relation
between where faults occur and where the observers are.

When an end node has problems, other nodes recognize
that the node has trouble but when there is trouble in net-
work equipment, including routers and switches, the symp-
toms should be different depending on the troubled equip-
ment’s peers.

Figure 1 shows an example topology. If a critical problem

5

Network C

Network A Network B

Network D

Node 1

Node 2

Node 3

Node 4

Node 6

Node 5

Node 7

Node 8

Router A

Router BIF1
IF2

IF1

IF2

IF1 IF2

IF1 IF2

IF3

IF3

IF4

IF3

Router C

IF1
IF2

IF4

Figure 1: Example Topology

occurs on IF 4 of Router A, the whole network is divided
into two parts, and nodes can only establish communication
within each network. In this case, nodes in Network A think
that Router A has problems, but other nodes recognize that
at least IF 1, IF 2 and IF 3 of Router A are healthy.

The behavior of the routers should be change depending
on the trouble caused by the route changes. Nodes in Net-
work B might not realize that there is a problem on Router B
or C if a new route exchange among the troubled routers is
finished quickly and the route configurations on these nodes
are appropriate excepting small fluctuations in the netwokr
characteristics. On the other hand, in Networks A, C, and
D, nodes will not connect to nodes in other networks when
their external router has a problem.

For nodes that have multiple network interfaces, trouble
on a single network interface causes complicated phenom-
ena, as would be the case if trouble occurred on one of the
network interfaces on Network C or D. In particular, in the
layers above the Network Layer, the source address of the
network layer should be determined by protocol in the net-
work layer, and an available interface will be selected auto-
matically. Thus, although it would appear that there is no
problem from upper layers, there will surely be problems
from the lower layers.

2.4 Fault Chains
Network faults often lead to other faults on other services.

Of course, the lower layer’s faults should cause upper layer
faults. In the same layer, we often see elements scrambling
for resources, such as the CPU clock, memory capacity, net-
work bandwidth, and so on. In this case, a service requires a
large amount of resources, and it causes faults in other ser-
vices because of resource shortages.

Moreover, there are important services that are used im-
plicitly. The Domain Name Service (DNS) is a major exam-
ple of these kinds of services. When the DNS is not well,

users cannot connect to other nodes using a fully qualified
domain name (FQDN), which causes users to be unable to
see Web pages using FQDN URLs and unable to send e-
mail because the mail exchanger (MX) server of each do-
main cannot be found.

3. FAULTS INJECTION INTO EXPERIMEN-
TAL ENVIRONMENTS

We described the characteristics of faults in network tech-
nologies in section 2, as well as how the effects of the faults
appear as various symptoms.

In this section, we discuss the methodology to inject faults
into our experimental environments.

3.1 Symptoms of Network Faults
The final circumstances of network faults are various.
Faults below the Transport Layer might appear as a link

going down or as degradations of the connection quality, in-
cluding an increase in the packet loss rate, an unstable round
trip time (RTT), a large jitter, an unstable time to live (TTL)
value, lower bandwidth, packet duplication, or a complex
combination of these phenomena.

However, the processes by which the trouble occurs are
different even if the ultimate consequence is the same. For
example, when a network has a loop and there is no man-
agement function, such as a loop detection, the traffic goes
around the loop. In this situation, the traffic volume would
increase until many packets passing through the links that
compose the loop are lost. In this process, when the traffic
volume is lower than the link bandwidth, there should be no
problem, and problems only emerge when the traffic volume
exceed the limit. Now, many organizations have introduced
intelligent switching hubs into their network. Thus, when a
link loop is created by operational errors, only broadcast data
will be amplified at first and later, all data should be ampli-
fied because entries in the forwarding database (FDB) will
exceed the limit. Several stages with different symptoms that
occur before the final symptom, as well as recovery stages,
are observed.

Faults in applications should also be different depending
on the purpose and structure of the target technologies.

3.2 Actual and Reproduced Elements
Trouble situations caused by problems in the layers be-

low the Application Layer might be reproduced by using net-
work emulators such as dummynet[11], netem[1] and NIST-
Net[4]. These tools enable us to introduce network char-
acteristics on a network interface. Another approach is to
introduce real trouble into target environments intentionally.

For accurate results, the best method to reproduce the tar-
get problems might be the latter one. However, in many
cases, it is difficult to create a realistic environment for re-
producing trouble situations, and the former method is use-
ful for avoiding these kinds of difficulties. However, when
using network emulators, users should create models that

6

Link Characteristic Simulation

Figure 2: Network Reproduction Using Link Emulator

Virtual Network

Figure 3: Network Reproduction Using Virtual Network

Real Network

Figure 4: Network Reproduction Using Real Network

describe the processes of the trouble. Moreover, network
emulators can change the link characteristics in response to
users’ triggers. Thus, the network emulator should change
drastically according to different user configurations, and it
is not suitable for reproducing the process of how different
problems produce their various consequences. To reproduce
the trouble situation accurately, it is necessary to model the
problems in a continuous process. These kinds of model-
ing are not easy in real reproductions. It is also difficult to
emulate physical failure in the real world, which would re-
quire users to break hardware equipments intentionally, and
even then the hardware might not show the required symp-
tom. Therefore, both methods are needed to reproduce vari-
ous faults. Table 3 shows trouble symptoms and the methods
that can be used to reproduce them.

There are three types of methods for imitating network
trouble situations. Figures 2, 3, and 4 show these types. Fig-
ure 2 indicates in-the-middle simulation of the whole net-
work. This type of method does not require a large amount
of resources for building the environment. Figure 4 shows
the method using a real environment for the whole network.
It enables users to have a realistic environment for conduct-
ing experiments. However, the costs of building and con-
trolling these environment is larger than that of simulation
methods.

Figure 3 shows model that is a hybrid of those in Figure
2 and 4. As virtualization technologies are developed and
used widely, we can introduce them to our environment. In
this case, physical machines are emulated, but we can use
actual software, including OSs, on them. Using this model,

StarBED Physical PC NodesVirtual Nodes by XENebula

Experimental Environment

SpringOS QOMET

Node Control by

 SpringOS

Wireless Network

Emulation by QOMET

Figure 5: Our Technologies for Building Experimental
Environments for Failure Situations

the cost of building environments can be reduced from that
of using physical machines for all nodes.

3.3 Our Approach
We adopt an approach that is a hybrid of those in Figures

2, 3, and 4, and introduce all these types to appropriate parts
in our environment.

We have tools for realizing a large-scale and realistic ex-
perimental environment on StarBED. SpringOS[6][8] is sup-
porting software for conducting experiments. The major
functions of SpringOS are resource management, power man-
agement of nodes, software installation, network topology
construction, scenario driving, and so on. It facilitates us the
creation of experiments. XENebula[5] enables users to run
many virtual machines. The roles of XENebula are creat-
ing disk images and configurations for all virtual machines
based on templates, allocating virtual machines to available
physical nodes based on the computing resources of the phys-
ical machines, and running configured virtual machines on
physical machines. QOMET[2] can emulate characteristics
of a wireless network on a wired network. It has behavior
models of wireless nodes, and it configures the wired link
characteristics using network emulators.

StarBED has many PC nodes, and XENebula can amplify
the scale of StarBED. SpringOS and XENebula build ex-
perimental topologies using physical and virtual machines.
SpringOS can also be used for scenario control on the phys-
ical and virtual machines. QOMET is a tool for emulating
wireless network behavior, but it can also be used to em-
ulate fault situations. QOMET models wireless networks,
and we can replace that model with that for fault reproduc-
tion. Figure 5 indicates the use of our technologies for fault
reproduction.

4. CASE STUDIES
We executed two experiments using fault injection. The

first one involved emulating home networks, power manage-
ment by a home energy management system (HEMS), and

7

Table 3: Trouble Symptoms of Each Layer and Usable Methods
Layer Trouble Symptoms Usable Method
Physical and Link goes down or connection of Real reproduction cannot be used, and network emulators
Data Link qualities degrades, No reachability should be adopted
Network No reachability or degradation of Network emulators can be adopted, but the trouble’s indiscrete

connection quality processes and in many cases it is too complex to model
its; behavior; actual reproduction should be used

Transport No reachability or degradation of Network emulators should cover the symptoms.
connection quality

Application Service unavailable, Network emulation and actual reproductions should be
depending on the application used depending on the target services

Servers for
Power Management

Virtual Machine Network by XENebula (461 ASs)

OSPF Network

Wireless Access Network
Emulated by QOMET

HEMS Electronics
Emulation

Emulated Town
(200 houses)

Communications for
Power Management

in Houses

Background
Traffic by XBurner

Power Consumption
Control

Figure 6: Topology for HEMS Emulation

wide area networks. The second one involved an environ-
ment for Cloud Computing Competition. In this section, we
describe these experiments.

4.1 HEMS Emulation with Actual Network El-
ements

The topology of this experiment is shown in Figure 6.
This experimental network has about 1100 nodes as exper-
imental elements utilizing about 60 physical nodes. The
main elements of this experiment are emulated smart houses
that have HEMS electronics and servers for power manage-
ment. The HEMS electronics managers send power con-
sumption information to the servers. The servers send a mes-
sage to reduce the consumption when they detect a house us-
ing too much electricity. The access network in these houses
is a wireless network, and the external gateway of the net-
work connects to an OSPF network in an emulated ISP. The
servers for power management are also connected to the ISP
network. The ISP has links to other ISPs that use the BGP
protocol.

The smart houses with HEMS electronics are simulated
according to an electric consumption models that reflects
residents’ behaviors. There are 200 simulated nodes in this
environment executed using 20 physical nodes. The wire-
less access network field is reproduced by QOMET using
a single physical host. The power management servers run
on actual PC nodes. We built the OSPF network using 20
physical nodes that have 4 core routers and configured Ze-
bra OSPF daemon runs on each physical nodes. The OSPF
routers exchange route information to maintain reachability
for the smart houses and HEMS power managers. There are
two virtual machine networks created and run by XENeb-
ula, which emulate a BGP network of Japanese ISP and their
neighbors. An ISP is emulated as a BGP router on a virtual
machine by utilizing software router daemons, which actu-
ally exchange their routes. Each network has 461 emulated
ISPs. XBurner[7] is a platform for generating traffic using
XENebula and SpringOS. It controls actual applications on
each virtual machine, such as apache HTTP daemons and
wget HTTP clients.

8

N
u
m
b
e
r
 o
f
R
e
c
o
r
d
s

Time

with trouble

without trouble

Figure 7: Instantaneous Received by Power Managers

We introduced three types of faults in this environment:

1. Changes in the link characteristics on the wireless ac-
cess network

2. Misconfiguration of an OSPF router

3. Massive traffic across the OSPF network

The first fault is realized using QOMET. In this case, we
assume that a thunderstorm occurred near the access net-
work and negatively affected the wireless links. The con-
crete symptom of this effect is that the wireless links go
down. When the thunderstorm is big enough to affect the
whole area or it have a direct effect on the external gateway,
none of smart houses can access the servers. Only some of
the houses are unable to access the servers when the negative
effect covers only a part of the area.

The second fault involved the OSPF daemon down state.
Two out of four core routers have up and down states. There
are four patterns: two in which one of them is downed, one
where both of them are down, and one where both of them
are up. These states are rotated every 20 s. This causes route
recalculation, and some packets may be lost or retransmitted
when the route is changes.

The last fault involves burdening the OSPF network with
a massive amount of traffic using XBurner. We run apache
and wget on virtual machines using XENebula and these ap-
plications generate massive HTTP traffic on the OSPF net-
work.

We actually built two environments: one with the three
kinds of faults and one without faults. The three types of
faults caused communication failures between the HEMS
servers and clients, and we observed the effects of these fail-
ures.

Figure 7 shows the number of records from smart houses
that are received by the power management servers. Records
are received at a very stable rate when there are no faults, be-
cause the houses send their data periodically. On the other
hand, the rate in the presence of faults fluctuates, because
the records are transmitted unevenly as TCP retransmission
algorithms recover packets when they are lost. Thus, the rate
at which the servers receive the records describing the elec-
tric consumption in each house is not stable. Long-lasting
faults can cause the retransmission algorithms to fail.

P
o
w
e
r
C
o
n
s
u
m
p
ti
o
n
 [
k
W
]

Time

with trouble
without trouble

Figure 8: Power Consumption in Smart Houses

Group 2

Group 1

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 9

Four Interfaces on Each Node

6 PC Nodes

Figure 9: Topology for Cloud Computing Competition

Figure 8 shows the instantaneous power consumption in
these environments. At around 12:56, power consumption in
the environment with faults is larger than that without faults,
because the management servers could not collect data from
the houses or because the control messages from them to
the HEMS clients were lost. The large loss of records is
apparent in Figure 7 at around 12:55.

4.2 Cloud Computing Competition
The Cloud Computing Competition is conducted as a joint

event with Interop Tokyo. One of the purposes of this event
is to provide environments for participants, who can freely
apply to participate in this event, to develop and apply novel
and effective technologies. The committee grants awards for
superior technologies in order to encourage the researchers
and developers and recognize outstanding technologies. In
the 2011 event, we introduced functions for introducing faults
into an environment. Maintaining healthy behavior in the
case of failures in the environment is especially important
for cloud computing technologies. These functions for in-
troducing faults are useful tools for ensuring the stability of
proposed technologies.

The environment for this event was built on StarBED, and
we made five sets of isolated environments for each partici-
pant this year. Figure 9 shows the topology for each partici-
pant.

There were 54 PCs, from which we made nine groups

9

with six nodes each. The PC nodes had four network in-
terfaces: IF1 to IF4. The L2 networks were isolated; IF1
of each group composed a VLAN network, and interfaces 2,
3, and 4 also each composed a VLAN network. Thus, there
were 36 L2 networks isolated by VLANs. Packets from each
network were routed by a central router to other networks.

We, the provider of the environment, were actually not
supposed to know the proposed technologies’ behaviors in
detail. Therefore, it was not clear what kinds of failures
would have what kinds of impacts. Thus, we built functions
to introduce failures when triggered by the participants.

We created two types failures:

• Changes in the characteristics of each network inter-
face on each PC node

• Shutdown of the network interface of the central router

Communication quality degradation on the PC nodes was
shown as software or hardware errors on the PC itself, and
that on the router interface was shown as network trouble
from other nodes or networks. The former type of degrada-
tion should reproduce the death of application software, and
the latter one should reproduce the behavior of a denial-of-
service (DoS) attack on the networks for example.

To realize these characteristic changes, we changed the
network interface media. The default configuration of the
network interfaces on one of the PC nodes was 1000 Mbps /
Full Duplex. The link characteristics were changed by con-
figuring the media to lower configurations, such as 10 Mbps
/ Half Duplex or a shutdown configuration.

Participants demonstrated their technologies for the judges
and some of them used these functions to show that their
products could perform effective recovery from faults. One
of the products described new peer-to-peer technologies, and
when some of nodes were downed, stored data in these nodes
were moved to other nodes.

5. DISCUSSION
In this paper, we propose a framework for injecting faults

into an experimental environment on a network testbed. How-
ever, we must address several additional issues to facilitate
the execution of complete experiments involving network
trouble.

First we used a wireless behavior model to inject neg-
ative effects cased by thunderstorm into a wireless access
network. The model is bundled with QOMET, and it is not a
failure model, although of course we can use it as a kind
of failure model. In order to create various failure situa-
tions, we need more models. Such models should include
the topologies and working environments of typical services.
It is difficult to prepare many kinds of complete experimen-
tal environments and scenarios, because massive variations
are expected. We might be able to define typical topology
sets that can be connected by the experimenter to build their
appropriate environment. SpringOS can control network el-
ements on nodes, it means we can introduce our scenario of

network trouble. Providing typical trouble scenario is also
important factor to make realistic experiments.

Another problem is how to ensure the accuracy of fault
injection. There are three kinds of accuracy. One is the
correctness of the failure model, another is the precision of
the controlled network elements in the experimental envi-
ronments, and the third is realism of the injected failures.
The first type of accuracy address how to produce clear net-
work element behaviors and how to clearly reproduce their
influences. The second one is influenced by the operational
accuracy. The third comes from the complex combined be-
havior of the previous two. We have to guarantee these three
types of accuracy.

In order to evaluate the behaviors of target technologies
in the presence of network failures, we have to build infras-
tructure for observing elements in the experimental environ-
ments. Although we can access all resources in an exper-
imental environment, it is difficult to know all events that
happen therein.

Moreover, to understand effects caused by failures effi-
ciently, kinds of integrated observation should be provided.
Although the symptoms are different depending to faults,
target technology, and so forth, but some these for general
elements can be provided.

To solve all of these hurdles, we intend to create a frame-
work that includes a complete user interface and precise mod-
els for many kinds of trouble in order to facilitate the use of
our approach and making sure justification of executed ex-
periments.

6. RELATED WORK
There are various types of fault injectors for actual node-

based environments.
We note that there are many proposals for injecting faults

using physical effects such as pin-level injections, electro-
magnetic interference (EMI), heavy-ion radiation, and so on.
We do not focus these kinds of approaches because of two
reasons: our targets are existing network testbeds that do not
have special equipment for these effects, and these effects
may cause destruction of the testbed hardware.

Network emulators such as dummynet and netem are de-
signed to control various link characteristics, including the
packet drop rate, delay, jitter and so forth. Flexlab[10] in-
troduces link characteristics measured on Planetlab[9] into
experimental environments on Emulab[12]. Modelnet can
also emulate network states using network emulators on the
core nodes of its environments. Network emulators enable
this function.

Traffic generators are also used as fault injectors. Sev-
eral traffic generators enable users to configure the packet
construction and order, even if they are not correct. More-
over, massive traffic from a traffic generator can put stress
on network elements. Some kinds of traffic generators just
reproduce the measured traffic, and some provide interac-
tive communications with target systems. Generators of the

10

former type require senders and only send traffic according
to their table and receivers that only receive and discard the
received packets. On the other hand, the other type of gener-
ator can send packets to any target server, and it can change
its behavior according to the response of the server.

Orchestra[3] is a fault injector that inserts a fault injection
layer between the target protocol layer and the lower layer
and manipulates messages throw this border. However, its
users must implement the inserted layer for their target pro-
tocol.

There are no model-based fault-injecting systems for a
network testbed like our approach.

7. CONCLUSION
Experiments are important for ensuring the correct behav-

ior of new network technologies before they are introduced
into a real environment. Since many types of trouble are
encountered in the real environments, evaluation of the be-
havior of new technologies in a trouble situation is required
as a part of these experiments.

We propose a fault injection system for evaluating run-
ning software source code and evaluating implementation of
hardware itself that utilizes our experiences in performing
many kinds of network experiments on StarBED. Our tools
for experimental execution, SpringOS, XENebula, QOMET,
and XBurner, are also usable for fault injection.

We built a large-scale experimental environment of phys-
ical and virtual nodes using SpringOS and XENebula on
StarBED. We reproduced fault situations using QOMET by
modeling wireless network characteristics and applying them
using network emulators. SpringOS can control the exper-
imental scenario, including failures, and XBurner is able to
generate massive traffic based on actual applications.

Our approach was used and validated in two case stud-
ies: HEMS emulation with actual network element and the
Cloud Computing Competition. In the HEMS emulation, we
introduced failures using actual misconfigurations and be-
havior modeling. The Cloud Computing Competition showed
that instantaneously changing network characteristics could
also reproduce some kinds of network trouble.

8. ACKNOWLEDGMENTS
We would like to thank Junya Nakata, Takashi Okada, and

Yasuhiro Ohara, for providing the building parts used in our
HEMS emulation experimental environment.

9. ADDITIONAL AUTHORS
Additional authors: Yoichi Shinoda (JAIST, 1-1 Asahidai,

Nomi, Ishikawa, Japan, email: shinoda@jaist.ac.jp).

10. REFERENCES
[1] netem — The Linux Foundation. http://www.

linuxfoundation.org/collaborate/
workgroups/networking/netem.

[2] R. Beuran, J. Nakata, T. Okada, L. T. Nguyen, Y. Tan,
and Y. Shinoda. A multi-purpose wireless network
emulator: Qomet. In 22nd IEEE International
Conference on Advanced Information Network ing
and Applications (AINA 2008) Workshops, FINA 2008
symposium, Mar. 2008.

[3] S. Dawson, F. Jahanian, and T. Mitton. Orchestra: A
Fault Injection Environment for Distributed Systems.
In Proceedings of 26th International Symposium on
Fault-Tolerant Computing (FTCS), June 1996.

[4] N. I. T. Group. NIST Net network emulation package.
http://www-x.antd.nist.gov/nistnet/.

[5] S. Miwa, M. Suzuki, H. Hazeyama, S. Uda,
T. Miyachi, Y. Kadobayashi, and Y. Shinoda.
Experiences in Emulating 10K AS Topology with
Massive VM Multiplexing. In The First ACM
SIGCOMM Workshop on Virtualized Infastructure
Systems and Architectures (VISA’09), Aug. 2009.

[6] T. Miyachi, K. Chinen, and Y. Shinoda. StarBED and
SpringOS: Large-scale General Purpose Network
Testbed and Supporting Software. In International
Conference on Performance Evaluation Methodlogies
and Tools (Valuetools 2006), Oct. 2006.

[7] T. Miyachi, S. Miwa, and Y. Shinoda. XBurner: A
XENebula-based Native Traffic-generation Platform.
In 6th International ICST Conference on Testbeds and
Research Infrastructures for the Development of
Networks and Communities (Tridentcom2010), Poster
session, May 2010.

[8] T. Miyachi, T. Nakagawa, K. ichi Chinen, S. Miwa,
and Y. Shinoda. StarBED and SpringOS Architectures
and their Performance. In International Conference on
Testbeds and Research Infrastructures for the
Development of Networks and Communities
(TridentCom 2011), Apr. 2011.

[9] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
Blueprint for Introducing Disruptive Technology into
the Internet. In HotNets-I ‘02, Oct. 2002.

[10] R. Ricci, J. Duerig, P. Sanaga, D. Gebhardt, M. Hibler,
K. Atkinson, J. Zhang, S. Kasera, and J. Lepreau. The
Flexlab approach to realistic evaluation of networked
systems. In Proceedings of the Fourth Symposium on
Networked Systems Design and Implementation
(NSDI 2007), pages 201–214, Cambridge, MA, Apr.
2007.

[11] L. Rizzo. Dummynet: a simple approach to the
evaluation of network protocols. ACM Computer
Communication Review, 27(1):31–41, 1997.

[12] B. White, J. Lepreau, L. Stoller, R. Ricci,
S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environment
for distributed systems and networks. pages 255–270.
USENIXASSOC, Dec. 2002.

11

