
FILE TRANSFER PERFORMANCE EVALUATION

R. BEURAN∗, M. IVANOVICI∗∗, V. BUZULOIU***

Am conceput şi implementat un sistem care permite măsurarea parametrilor
calităţii serviciilor (QoS) în reţelele de calculatoare. Folosind acest sistem am
evaluat performanţele unor componente de reţea şi am studiat în mod obiectiv
cerinţele câtorva aplicaţii de reţea, astfel încât acestea să ofere o calitate
acceptabilă de către utilizator. In acest articol prezentăm rezultate pentru transferul
de fişiere prin FTP şi performanţa protocolului de reţea subiacent, TCP. Am definit
două măsuri obiective ale calităţii la nivelul utilizatorului: debitul util şi eficacitatea
temporală a transferului. Am identificat relaţia între parametrii QoS şi calitatea
percepută de utilizator pentru transferul de fişiere.

We designed and implemented a system that permits the measurement of
network Quality of Service (QoS) parameters. Using this system we evaluated the
performance of several network devices and studied objectively the requirements of
network applications for delivering user acceptable quality. In this article we
present results on file transfer by FTP and the performance of the underlying
network protocol, TCP. We defined two user-level metrics: goodput and transfer
time performance. We identified the relationship between network QoS parameters
and user-perceived quality for file transfer.

Keywords: QoS measurement, performance evaluation of network applications,
user-perceived quality, file transfer performance, TCP performance evaluation.

Introduction

Network applications with real-time requirements have started to spread
on a larger and larger scale over the Internet. This lead to a wider recognition of
the issues related to Quality of Service (QoS). We consider QoS to be the fidelity
of a system’s observable behaviour to expectations: one can only assess quality by
comparing the result of a measurement with the expected value for that

∗ Teaching Assistant, Applied Electronics and Information Technology Chair, “Politehnica”
University Bucharest, Romania.
∗∗ Research Assistant, Applied Electronics and Information Technology Chair, “Politehnica”
University Bucharest, Romania.
*** Professor, Applied Electronics and Information Technology Chair, “Politehnica” University
Bucharest, Romania.

measurement. Determining the performance characteristics of a network system is
the first step in understanding the application-level behaviour. This must be
followed by an evaluation of the user-perceived quality (UPQ) for that particular
application and establishing the relationship with the measured QoS parameters.

Each network application requires a minimum QoS level in order to run
according to user expectations [1], [2]. Network elements along the path cause
degradation that accumulates. There is a maximum end-to-end degradation within
which the network must deliver the application traffic for it to run in a satisfactory
manner. The number of systems designed to correlate the quality differentiation
provisioned by networks with the UPQ for specific applications is reduced.
Knowing the requirements of applications, such as file transfer or Internet
telephony, allows predicting whether a certain connection is valid for a certain
application and what will be the perceived quality for that application.

Several projects are currently involved in studying service differentiation
by QoS techniques. Mechanisms deployable in order to ensure service
differentiation in networks were studied by the Quantum project [3]. TEQUILA
concentrates on network service definition and traffic engineering tools built upon
DiffServ in order to obtain quantitative end-to-end QoS guarantees [4], [5], [6].
Internet2 started the End-to-End Performance Initiative [7] aiming to create a
predictable and well-supported network environment. While these projects focus
on network QoS mechanisms, we established first the application requirements
such that user expectations are fulfilled. Only subsequently QoS mechanisms may
be deployed to meet these requirements.

A number of projects focus on the relationship between network
conditions and application performance. A survey on QoS application needs was
published by the Internet2 QoS Working Group [8], but their approach is not
objective and the conclusions are vague. TF-STREAM reported on best-practice
guidelines for deploying real-time multimedia applications [9]. ITU-T defined
network performance objectives for IP-based services in [10]. HEAnet reviewed
several aspects of perceived quantitative quality of applications [11]. Most of
these approaches are qualitative, whereas we aim at creating a quantitative
representation of UPQ that can be related to QoS parameters.

File transfer is one of the basic applications running over today’s
networks. It is largely used for the simple purpose of transferring data between
two points using FTP (File Transfer Protocol), but its most important use is within
Web browsing using HTTP (Hyper Text Transfer protocol). We studied FTP
which is extensively used in LANs, as well as over the Internet. There is also
research focusing on HTTP, see for example [12].

File transfer is an elastic TCP-based application. TCP tries to occupy as
much of the available bandwidth as it can handle. It also adapts its transmission
rate to prevailing network conditions – with high loss rates it backs off to a slower

transmission rate. It also provides reliable data transfer by means of its loss
recovery mechanisms.

TCP behaviour is analysed by a multitude of researchers. Some of them
take the analytical approach [13], [14], [15]. Another path is that of simulation
[16], [17]. There exists also the possibility to do experimental work in real
networks, to assess raw network performance [18] or to collect traffic traces [19].
Each of these methods has certain advantages and disadvantages related to their
accuracy and the range of conditions that are analysed. Emulation is a hybrid
performance evaluation methodology enabling controlled experimentation with
real applications. We consider that this approach is the most effective; therefore it
is an integral component to our approach of studying QoS.

There are two major approaches to measuring network QoS parameters:
active and passive. Active measurement implies generation of traffic that is
injected in the network systems under test and analysis of their response.
Examples of this type are simple applications, such as ping and traceroute, or
more complex ones, like Iperf [20]. Some of them, and also NetIQ Chariot, a
commercial product, emulate transaction traffic from real applications and
measures response time, throughput etc. A QoS testbed topology was described
by the SEQUIN project [21]. For passive measurement on the other hand, one
does not interfere with network functioning and monitors the traffic of real
applications to compute the network QoS parameters. Hence application
behaviour can be correlated with measured network conditions. This is the
approach we undertook in our experiments. We built a system [1] able to measure
non-intrusively the network QoS parameters and obtained a one-way delay
measurement accuracy of 1 µs, for any size packets, up to loads of 100 Mbps.

In parallel with monitoring network traffic for computing QoS parameters,
we quantify the perceived quality for applications, in this case file transfer by
FTP, based on specifically defined metrics. Consequently we can correlate
network conditions with the UPQ for these applications. For FTP this allows
studying the performance of the underlying TCP mechanisms under various
networks conditions.

Note that TCP can be redesigned to perform better in current best-effort
networks. Initially the TCP congestion avoidance and control mechanisms were
designed for networks that were relatively slow [22]. Nowadays networks have a
much higher bandwidth, therefore new mechanisms could be used to improve
performance [23]. However these enhancements are not widely spread, therefore
our work concentrates only on standard out-of-the-box applications.

1 Measurement System

The system we designed is shown in Figure 1 in a typical test setup. A
detailed description of the system is available in [1]. For a better understanding
we present here the basics. We mirror the traffic on the link between two PCs that
run the network application under study using FastEthernet taps. This traffic is fed
into programmable Alteon UTP network cards. From each packet all the
information required for the computation of the network QoS parameters is
extracted and stored in the local memory as packet descriptors. The host PCs,
which control the programmable NICs, periodically collect this information and
store it in descriptor files. This data is then used to compute off-line the following
network QoS parameters: one-way delay and jitter, packet loss and throughput.
We can calculate instantaneous or average values, and various histograms.

Figure 1. Measurement system setup.

The same collected data is used to assess the UPQ for FTP, using the

metrics described in section 3. What follows is the most important step of our
approach: correlating the network QoS parameters that have been computed for
the connection with the UPQ calculated for the studied application. This
correlation allows testing network connections before deploying network
applications, and predicting the expected UPQ for those applications.

Our test setup makes use of a network emulator, NIST Net [24]. The
emulator can degrade network QoS by introducing in a controlled way artificial
delay, jitter, packet loss and throughput limitations. We have used such a solution
in order to be able to analyze a wide range of controllable network conditions,
while using real applications. This would not have been possible using real
networks or simulators.

2 QoS metrics

Based on the data collected by the QoS measurement system we compute
off-line the following QoS parameters: average one-way delay and jitter, average
throughput and packet loss [25], [26]. The average one-way delay is computed by
taking into account only the data frames. The average jitter is computed in three
ways, only for the data frames, based on the generic formula (1):

∑
=

−=
N

i
referencei DD

N
J

2

1 , (1)

where J is the average jitter, N is the total number of transmitted data frames, Di is
the one-way delay of each data frame, Ni ,1= , and Dreference is the reference
delay. The reference delay can be the delay of the first frame [25], the average
delay or the delay of the previous frame [26]. Since the average jitter an
application would experience is influenced by the delay of the previous frame, we
consider it the most relevant from an application-oriented perspective. From
Figure 2 one can also observe that this is has a smoother variation with packet
loss.

Figure 2. Average jitter computation comparison.

The average throughput is computed taking into account all transferred

frames, with respect to the duration of the test. Packet loss is determined using a
packet identifier associated by the monitoring system to each frame and written in
the descriptors. A packet is considered lost if its identifier, which appears in the
descriptor file at the first measurement point, doesn't appear in the descriptor file
at the second measurement point.

3 FTP UPQ metrics

A very important aspect of our work is the definition and quantification of
application specific metrics. The two UPQ metrics we propose for FTP, goodput
and transfer time performance, allow the assessment of the user-perceived quality
for this particular application.

Goodput (G) quantifies the network efficiency of the file transfer. It is
computed as follows:

][
][min

bytesB
bytesB

G = , (2)

where Bmin is the minimum number of bytes required for that file transfer
(including protocol overhead for Ethernet, IP, TCP and FTP) and B is the count of
the actually transmitted bytes.

 Goodput values are on a scale from 0 to 1, where 1 means maximum
efficiency of the file transfer. Goodput decreases due to packet retransmission
when loss occurs. Given its definition, G doesn’t depend on any time parameter
related to the transfer (e.g. transfer duration, round-trip time (RTT)) but only on
the amount of bytes being effectively transmitted. Therefore an additional metric
is required to take this aspect into account.

Transfer time performance (TTP) allows the evaluation of the time
efficiency for a file transfer:

][][
][

][
][min

sTbpsL
bytesB

sT
sT

TTP th

⋅
== , (3)

where Tth is the theoretical transfer duration and T is the measured transfer
duration. The theoretical transfer duration is the ratio of the minimum number of
transmitted bytes required for that transfer, Bmin, to the line speed, L (in our case
100 Mbps). T is computed as the difference between the time when the last packet
from a transfer was received and the time when the first packet was sent.

TTP is also on a scale from 0 to 1, with 1 meaning the ideal, optimum
performance. Packet retransmission delays make TTP values decrease. TTP
depends indirectly on all parameters that influence transfer duration, such as RTT,
TCP window size etc.

4 Experimental Results

In the experiments we performed, we introduced artificial packet loss
using the NIST Net network emulator [24]. Packet loss was introduced in both
traffic directions.

We ran our tests using the setup depicted in Figure 1, with different
transferred file sizes. The conditions for our file transfer tests were the following:
FTP client with Linux kernel 2.4.6 (64 kB maximum TCP window), ftp-0.17-7,

FTP server with Linux kernel 2.4.9 (64 kB maximum TCP window), wu-ftpd-
2.6.1-20. In what follows, we present values obtained by averaging over 100
experiments for each intended loss rate. We ran two series of tests, one with a
RTT of 0.8 ms (emulating a local network scenario) and the other with a RTT of
60 ms (emulating a wide area network).

We present first two graphs that show the moments of time packets arrive
at the receiver and the throughput. The gaps correspond to the delay occasioned
by one or more packets being lost, that triggers the retransmission mechanism.
This leads of course to a short-term decrease of the instantaneous throughput.

Figure 3. Packet count of received frames with respect to their reception time (file size = 1 MB,

RTT = 0.8 ms, packet loss = 1%).

Figure 4. Instantaneous throughput with respect to time (file size = 1 MB, RTT = 0.8 ms, packet

loss = 1%).

Table 1 shows the TTP values obtained in zero loss conditions for two
different RTTs and several transferred file sizes. It can be seen that the time
efficiency increases with file sizes, since the overhead of the connection
establishment and termination becomes less significant compared to the file
transfer time itself. The variation of TTP between the two RTTs is of an order of
magnitude.

File size 10 kB 100 kB 1MB 10MB

0.8 ms RTT 0.0219 0.1650 0.8696 0.8919
TTP

60 ms RTT 0.0029 0.0141 0.0559 0.0791

Table 1. Transfer time performance depending on file size and RTT (packet loss = 0%).

TCP window size is an important parameter regarding TCP performance.

The optimal window size, Woptimal, is given by the bandwidth-delay product:
RTTBWWoptimal ⋅= , (4)

where BW is the bottleneck bandwidth of the connection (100 Mbps in our case).
Considering the 0.8 ms RTT we obtain W0.8 = 10 kB. For the 60 ms RTT

we get W60 = 750 kB. Given that the default maximum window size was 64 kB,
this doesn’t represent a limitation for the 0.8 ms RTT, but it limits the traffic for
60 ms RTT, and the performance is one order of magnitude lower, exactly as
observed in Table 1.

The results presented below were obtained for a 10 kB file, which is the
typical file size for Internet traffic [27]. For larger file sizes, the graphs of goodput
and TTP have a similar shape. TTP values approach 1 for large files and small
RTTs (see Table 1), which shows that it is more efficient to send the same amount
of data in one large transfer than in multiple short ones. For these tests, intended
packet loss rates ranged from 0% to 25%.

Goodput (see Figure 5) decreases almost linearly with packet loss,
showing the diminution of link utilization efficiency. As expected RTT doesn't
have any influence on goodput, since G is not time dependent. Therefore goodput
is not a stand-alone indicator of file transfer UPQ and must be correlated with
TTP.

Transfer time performance (see Figure 6) shows the significant
dependency of transfer time on packet loss. The maximum value of TTP equals
0.0219 due to the additional durations of connection establishment and
termination, which represent approximately 96% of the transfer time for 10 kB
files.

Figure 5. Goodput versus packet loss for file transfer tests (10 kB file).

Figure 6 shows that for 0.8 ms RTT, TTP value decreases 20 times for

packet loss rates of 5% compared to the value obtained at zero loss. This is
equivalent with an increase of 20 times of the transfer duration, which means a
significant degradation of the UPQ. For loss rates of 10% and higher, performance
degrades hundreds of times. For 60 ms RTT TTP is smaller than for 0.8 ms RTT
and loss has a less dramatic influence on it.

Figure 6. Transfer time performance versus packet loss for file transfer tests (10 kB file).

The influence of packet loss on TCP performance depends on the type of

the lost packets: losing a data packet is easily hidden by the retransmission
mechanism, whereas losing a TCP connection establishment or termination packet
has a more important effect due to the relatively large timeouts. For 10 kB files,
transfer duration has increased by an order of magnitude in such cases.

The two figures below show, for comparison. the goodput and TTP for
three file sizes (the RTT was 0.8 ms, intended packet loss ranged from 0 to 40%).
Note the similarity between the goodput graphs (Figure 7) and the performance
improvement with transferred file size emphasized by the TTP graph (Figure 8).

Figure 7. Goodput for three file sizes (RTT = 0.8 ms).

Figure 8. Transfer time performance for three file sizes (RTT = 0.8 ms).

Conclusions

The novelty of our work is that we are able to both accurately measure
network QoS parameters and objectively assess application UPQ in parallel. This
allowed us to quantify the relationship between QoS parameters and UPQ for file
transfer and identify its QoS requirements in a standard configuration.

Goodput diminishes as expected with packet loss. The dependency is
linear and goodput decrease is not very large in the range of 0 to 5% packet loss.

Setting the value of 0.9 as the threshold of acceptability for network utilization
efficiency, we determine that packet loss should not exceed 5%. For loss rates
above 20%, goodput indicates a transfer efficiency lower than 0.7. This
approaches 0.5 for loss rates close to 40%.

The transfer time performance graph has a negative exponential shape,
showing that the time needed to transfer a file increases significantly with packet
loss. For loss rates around 5% and low RTTs, the TTP is one order of magnitude
smaller than the value obtained at zero packet loss. The degradation observed is
less significant for the 60 ms RTT than for the 0.8 ms RTT. At 25% loss rate, the
time to transfer has become several hundred times larger than in the case the loss
rate is smaller than 5%. This renders the connection practically unusable for file
transfer.

We conclude that file transfer applications require packet loss not to
exceed 5% in order to keep the network utilisation efficiency above 0.9 and not
have an increase of the transfer time larger by more than an order of magnitude
with respect to no loss conditions. Good performance requires even tighter
bounds: packet loss should not exceed 1% in order to obtain a network utilization
efficiency around 0.99 and a transfer time not larger than three times with respect
to no loss conditions.

Using our results it is possible to predict an application UPQ based on the
corresponding measured network QoS parameters and understand the reasons of
possible application failure. One can also determine the end-to-end network QoS
requirements for an application to run with a desired UPQ level. Mapping high-
level user requirements to network QoS conditions is also a key issue in Service
Level Agreement contracts.

R E F E R E N C E S

[1] R. Beuran, M. Ivanovici, B. Dobinson, N. Davies, P. Thompson, “Network Quality of
Service Measurement System for Application Requirements Evaluation”, International
Symposium on Performance Evaluation of Computer and Telecommunication Systems,
SPECTS'03, Montreal, Canada, July 20-24, 2003, pp. 380-387.

[2] R. Beuran, M. Ivanovici, “User-Perceived Quality Assessment for VoIP Applications”,
technical report, CERN-OPEN-2004-007, January 2004.

[3] T. Ferrari, S. Leinen, J. Novak, S. Nybroe, H. Prigent, V. Reijs, R. Sabatino, R. Stoy,
“Report on Results of the Quantum Test Programme”, Quantum Project, June 2000.

[4] D. Goderis (editor), “Functional Architecture Definition and Top Level Design”, TEQUILA
Project, September 2000.

[5] D. Griffin (editor), “Selection of Simulators, Network Elements and Development
Environment and Specification of Enhancements”, TEQUILA Project, May 2000.

[6] D. Manikis (editor), “Overview of the TEQUILA Reference Testbeds”, TEQUILA Project,
February 2001.

[7] Internet2 End-to-End Performance Initiative, http://e2epi.internet2.edu/.

[8] D. Miras, “A Survey on Network QoS Needs of Advanced Internet Applications”, working
document, Internet2 QoS Working Group, December 2002.

[9] V. Cavalli, E. Verharen, “TF-STREAM Real Time Multimedia Applications”, TERENA
Technical Report, March 2002.

[10] ITU-T Recommendation Y.1541. “Network Performance Objectives for IP-Based
Services”, ITU, draft, October 2001.

[11] V. Reijs, “Perceived Quantitative Quality of Applications”, http://www.heanet.ie/Heanet/
projects/nat_infrastruct/perceived.html.

[12] J. Padhye, S. Floyd, “Identifying the TCP Behavior of Web Servers”, SIGCOMM 2001,
August 2001.

[13] M. Mathis, J. Semske, J. Mahdavi, T. Ott, “The macroscopic behavior of the TCP
congestion avoidance algorithm”, Computer Communication Review, 27(3), July 1997.

[14] J. Padhye, V. Firoiu, D. Towsley, J. Kurose, “Modeling TCP throughput: a simple model
and its empirical validation”, Computer Communication Review, 28(4), pp. 303-314, 1998.

[15] J. Padhye, V. Firoiu, D. F. Towsley, J. Kurose, “Modeling TCP Reno Performance: A
Simple Model and Its Empirical Validation”, IEEE/ACM Transactions on Networking,
8(2), pp.133-45, April 2000.

[16] K. Fall, S. Floyd, “Simulation-based Comparisons of Tahoe, Reno, and SACK TCP”,
Computer Communication Review, 26(3), July 1996, pp. 5-21.

[17] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P. Huang, S. McCanne, K.
Varadhan, Y. Xu, H. Yu, “Advances in Network Simulation”, IEEE Computer, 33 (5), pp.
59-67, May 2000.

[18] K. Korcyl, G. Sladowski, R. Beuran, R. W. Dobinson, C. Meirosu, M. Ivanovici, M. L. Maia.
“Network performance measurements as part of feasibility studies on moving part of the
ATLAS Event Filter to off-site Institutes”, Lecture Notes in Computer Science, Springer-
Verlag Heidelberg, Vol. 2970, Grid Computing: First European Across Grids Conference,
Santiago de Compostela, Spain, February 13-14, 2004, pp. 206 - 213.

[19] The Internet Traffic Archive, http://ita.ee.lbl.gov/index.html.
[20] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, K. Gibbs, “Iperf:”, http://dast.nlanr.net/

Projects/Iperf/.
[21] M. Campanella, M. Carboni, P. Chivalier, S. Leinen, J. Rauschenbach, R. Sabatino, N.

Simar. “Definition of Quality of Service Testbed”, SEQUIN Project, April 2002.
[22] V. Jacobson, “Congestion Avoidance and Control”, ACM Computer Communication

Review, SIGCOMM '88, Stanford, CA, USA, August 1988.
[23] California Institute of Technology, “FAST Kernel for Large Data Transfers”,

http://netlab.caltech.edu/FAST/, November 2002.
[24] National Institute of Standards and Technology, NIST Net, http://snad.ncsl.nist.gov/

itg/nistnet/.
[25] ITU-T Recommendation I.380, “Internet Protocol (IP) Data Communication Service - IP

Packet Transfer and Availability Performance Parameters”, ITU, February 1999.
[26] C. Demichelis, P. Chimento, “Instantaneous Packet Delay Variation Metric for IPPM”,

IETF RFC 3393, November 2002.
[27] M. F. Arlitt, C. L. Williamson, “Web Server Workload Characterization: The Search for

Invariants”, Proc. SIGMETRICS, Philadelphia, PA, USA, April 1996.

http://www-net.cs.umass.edu/~jitu/
http://www.icir.org/floyd/
http://www.cs.berkeley.edu/~kfall/
http://www.icir.org/floyd/

