
Versatile FPGA-based Hardware Platform for
Gigabit Ethernet Applications

Matei Ciobotaru
�
, Mihail Ivanovici

�
, Razvan Beuran

�
, Stefan Stancu

�
,�

CERN,
1211 Geneva 23, Switzerland

and
”POLITEHNICA” University

Bucharest, Romania
Email: matei.ciobotaru@cern.ch, mihail.ivanovici@cern.ch, razvan.beuran@cern.ch�

University of California, Irvine
Irvine, CA 92697-4575

Email: stefan.stancu@cern.ch

Abstract— Hardware platforms are most suitable to Gigabit
Ethernet applications, which require high packet-processing rate
capabilities. FPGA-based implementations offer the possibility
of changing the functionality of the platform to perform several
tasks. Using an FPGA-based custom-design PCI platform we de-
veloped two highly-configurable applications: a Gigabit Ethernet
Tester and a Network Emulator.

The Gigabit Ethernet Tester, a flexible traffic generator, makes
it possible to evaluate network equipment before deployment
in a complex network infrastructure, as well as to assess the
performance of in-place network devices. We describe the use of
this system for the evaluation of Gigabit Ethernet switches, as
part of the design process of the ATLAS data acquisition network
at CERN.

The Network Emulator project implements a “network-in-a-
box” that permits reproducible experiments in realistic scenarios.
By introducing controlled degradation to the network traffic,
we study real-application behaviour under a wide range of
specific network conditions. We investigate the performance
of commonly-used network applications, such as file transfer,
Internet telephony (VoIP) and video streaming.

I. INTRODUCTION

Despite the steady increase of CPU power, conventional
CPU based systems are still overwhelmed when faced with
high-frequency I/O operations. Gigabit Ethernet applications
which require line-rate processing for all frame sizes call
for hardware implementation. FPGA based-platforms fulfill
the performance requirements and provide extra flexibility in
comparison to ASIC implementations. Using an FPGA-based
custom-design PCI platform we developed tools that make it
possible to perform two different tasks:

1) characterize Gigabit Ethernet devices so that they can
be selected based on pre-defined requirements;

2) study application behaviour under given network condi-
tions and determine the dependency between application
performance and experienced network quality degrada-
tion.

The paper first describes the Gigabit Ethernet tester. Assess-
ing the performance of the existing Gigabit Ethernet switches
is a prerequisite for the design of any high-performance

specialized network, such as the one to be used in the ATLAS1

data acquisition system. The quantitative evaluation of the
degradation likely to be introduced by the switches allows
to predict the behaviour of network applications under given
network conditions. Our second application is the Network
Emulator. Emulation is a technique that allows determining
the dependency of application performance on network quality
degradation.

Combining the results from the active measurements on
real switches with the ones from application performance
assessment using a network emulator offers the possibility of
having a global view on how the whole system will behave,
before actually building and deploying it. It also allows for
architectural choices in the process of designing the network,
based on the application-level requirements.

A. State of the art

Platforms that are using hardware acceleration for network-
based applications have been built before. In our group we
developed the Enet32 FastEthernet Tester based on FPGAs
[1] and a Gigabit Ethernet Tester based on the Alteon pro-
grammable network interface cards [2]. A system similar
to the one described in this article is the GNET-1 [3] that
provides functions for network emulation and traffic gener-
ation. Commercial applications are also available. Celoxica,
the company that makes the Handel-C language compiler, has
the RC Series of development platforms, which provide a
complete environment that can be used among other things
for networking applications [4].

Grace to the flexible design of both the hardware and the
low level firmware, the system we describe can be used to
implement various Gigabit Ethernet applications. This feature
is achieved through the use of programmable hardware and of
a high-level programming language, Handel-C from Celoxica
[5], enabling a rapid implementation of algorithm into hard-
ware. Moreover, the platform provides high port count testing

1One of the experiments being built at CERN, Geneva, Switzerland.



equipment, at a fraction of the cost of equivalent commercial
systems.

The methodology for testing switching devices is currently
specified in various RFCs (Request For Comments from IETF)
[6], [7], [8], [9]. These RFCs define the types of traffic to
be used for benchmarking switches, the parameters to be
measured, pre-defined states to be tested etc.

Many commercial solutions are available for network
testing—such examples are the Ixia 1600T [10] and the
Spirent Smartbits systems [11]. However these are mainly
oriented toward the market of device manufacturers and lack
the flexibility required for specialized research and develop-
ment. On the other hand, using customizable platforms allows
performing various special tests. For example we developed a
methodology of measuring the size of internal switch buffers,
which requires special traffic patterns to be sent to the switch
under test. This can not be achieved with the commercial
testers that were built to perform mainly the tests described in
benchmarking RFCs.

There are several network emulators available at the mo-
ment, many of them as software implementations. They can
be installed and run on ordinary personal computers, which
makes them very attractive for building cheap experimental
setups, such as NIST Net [12] or ONE [13]. In the case of
all software implementations, the accuracy of the degradation
they introduce, e.g. delay, cannot be guaranteed. Hardware
implementations exist as well, and the number of commercial
emulators is ever increasing. Products such as Shunra Virtual
Enterprise [14], LANForge-ICE [15] are readily available on
the market. The main problem with all the existing implemen-
tations of network emulators is that the loss and delay they
introduce is not correlated, therefore the degradation that a
certain traffic flow will experience is not realistic. Since each
packet is treated independently, the delay variation may lead
to packet reordering which in real network equipment cannot
occur when there is only one way from the input port to the
output port.

The delay variation should be naturally induced and the
original packet sequence should be preserved inside a certain
stream. All these requirements are met by our system through
the use of an approach that emulates the interdependence
between packet loss and delay experienced by traffic flows.

After assessing the degradation introduced by the switching
mechanism itself, we quantitatively measure the degradation
introduced by the service differentiation algorithms imple-
mented in the existing Gigabit Ethernet switches, especially
by the scheduling mechanisms.

The tests are conducted according to the methodology
described in [16]. The results of our tests are compared against
the user expectations based on ideal switch models.

II. THE HARDWARE PLATFORM

The Gigabit Ethernet platform is based on a PCI card that
was designed and built at CERN. The main component of the
card is an Altera Stratix FPGA. The floor plan of the card is
shown in Figure 1.

Fig. 1. Floor plan of the PCI card.

Apart from the central FPGA, the card has two Gigabit
Ethernet ports, one port for GPS clock synchronization and
memory used for packet processing (SDRAM and SRAM).
The part of the FPGA firmware that provides the high-
level functionality (user application) is written in the Handel-
C language [5]. In addition to the user code, the Ethernet
MAC, PCI and SDRAM controllers are also integrated into
the FPGA. Using this approach we obtained a simpler board
layout. More information about the platform is available in
[17].

The board fits into a standard PCI connector. Using PCs that
provide several PCI slots we built a testbed comprising of 64
cards distributed in 15 industrial PCs. A photo of the system
connected to a device that came for evaluation is shown in
Figure 2.

Device Under Test

GETB Tester

Fig. 2. Gigabit Ethernet testbed.

For the control infrastructure we use the Python scripting
language [18]. From a central workstation we can configure
and monitor all the cards available. The configuration is done
via scripts or from the command line, while the monitoring
of the statistics can be done also using a graphical interface.
Python was chosen because it allows us to write scripts that
drive the system automatically without user intervention. The
software currently runs on the Linux OS, but in principle it
supports any platform that can run a Python interpreter.

III. THE NETWORK TESTER

The network tester is the primary application of the FPGA-
based Gigabit Ethernet system. Its design was driven by the



need to evaluate network equipment for the ATLAS experi-
ment at CERN [19]. The ATLAS data acquisition system relies
on a large Gigabit Ethernet local area network. The real-time
nature of the application imposes strict requirements for the
network in terms of packet loss, throughput and delay. The
tester is used to verify that all switching devices deployed in
the network meet these specifications.

A detailed description of the tester project can be found in
[17]. Here, we only give an overview of its main features.

The strong point of the tester is the ability to generate traffic
at Gigabit line-speed and to compute averages and histograms
of the network parameters (throughput, delay and packet loss)
in real time. Other statistics, such as min, max, ����� percentile
can be made available.

The stream of packets is generated according to a set of
descriptors that are loaded into the memory of the card. A
packet descriptor contains information about source, destina-
tion, packet size and inter-packet gap. The generated packets
can be both Layer 2 and Layer 3 (IPv4 and IPv6). The number
of descriptors is only limited by the amount of available
memory (currently 2 million).

Depending on the values of the various descriptor fields,
which are computed offline, different traffic patterns can be
generated. For example, using the value of the inter-packet gap
field one can produce any arrival-pattern distribution, such as
Constant Bit Rate, Poisson or Erlang.

In addition to the descriptor-based mode, a special mode
exists in which the tester emulates a request-reply system. This
produces traffic similar to the one between the applications of
the ATLAS data acquisition system.

A. Sample results for the Gigabit Ethernet Tester

We further present some results obtained using the network
tester: a fully-meshed traffic and a QoS test.

1) Fully-meshed throughput test: During this test every
ports sends Constant Bit Rate traffic to all the other, with a
uniform random choice of destination. The frame size during
a test trial is constant. The following frame sizes have been
used: 64, 135, 512, 1027 and 1518 bytes. The 64 byte frames
correspond to the worst case in number of events received
by the switch and can be used to characterize the per-packet
processing overhead. The 1518-byte packets correspond to the
most data-intensive case, hence it shows the maximum amount
of data that can be forwarded by the device. Three middle
range sizes are also used: 135, 512 and 1027. Two “odd”
values (135 and 1027) have been chosen in order to reveal
the device behaviour for frame sizes which are not common in
benchmarking tests ([20] recommends the use of 64, 128, 256,
512, 1024, 1280 and 1518-byte frames for testing switching
devices).

Figure 3 illustrates the loss rate versus offered load. The
loss rate is zero (or insignificant) for loads inferior to approx-
imately 95%, and becomes non-negligible (yet smaller than
1.5%) for higher loads.

2) QoS test: We configured 8 ports to send traffic with 8
different priorities to the ����� port. Each transmitter is sending

Fig. 3. Fully-meshed throughput results.

at the same rate to the destination, but with a different priority
level. In this test we use 802.1q VLAN tagged frames. The
priority is part of the VLAN tag and up to 8 priorities can be
used. Additional information concerning the evaluation of the
delivery QoS characteristics of Gigabit Ethernet switches can
be found in [16].

For a given input transmitted rate (load) the receiving port
records the packet loss, latency and throughput for each traffic
priority. By varying the input load we obtain curves that show
the received throughput observed for each flow.

We ran this test on two different devices, denoted here by A
and B. These devices implement a Strict Priority scheduling
mechanism—device A on 8 queues, device B on 4 queues.
For device A we expect that each priority will go to separate
queue and for device B we expect that priorities 0 and 1 will
be assigned to Queue 1, priorities 2 and 3 will go to Queue 2
and so on. Figure 4(a) illustrates the behaviour of Device A:
the QoS scheduling mechanism is properly implemented.

The same test was performed on Device B and the result is
shown in Figure 4(b). From the figure we can easily observe
that the scheduling is not done properly, since all flows are
given approximately the same bandwidth, regardless of their
priority.

IV. THE NETWORK EMULATOR

The network emulator is a “packet processor”, with a
general architecture composed of a “packet path” and a
“control path” (Figure 5). The Packet Path (Figure 5(a))
consists of a storage block (the Packet Data Storage) and
receiving/forwarding modules (i.e. the Packet Data Receiver
and the Packet Data Forwarder). The Control Path (Figure
5(b)) processes the packet references (structures that allow the
identification of packet inside the system) by applying different
service degradation that acts on traffic flows through packet
loss, delay and throughput limitation. It also interacts with the
packet path and has the knowledge about the place (memory
address) where packets are stored.

A. Application Performance Assessment

Network emulation is a technique that allows the assessment
of real network application performance in a laboratory setup.



(a) proper implementation

(b) erroneous implementation

Fig. 4. QoS tests for Strict Priority scheduling.

(a) Packet Path

(b) Control Path

Fig. 5. Network Emulator architecture.

By controlling the quality degradation introduced by a network
emulator, one can study the application behaviour in a wide
range of network conditions.

To assess the application performance we use the setup
depicted in Figure 6. A detailed description of this system
can be found in [21], [22]. By UPQ we denote the User-
Perceived Quality quantified in a specific way for each class
of application under test. Note that application experiments
were performed so far only with a freely-available network
emulator, NIST Net [12], which treated independently the loss
and delay. The Network Emulator that we currently develop
uses a novel approach to emulation that ensures more realistic
reproduction of network conditions by jointly dealing with
delay and packet-loss in order to emulate very closely reality.
Initial tests have allowed us to study the behaviour of short-
lived TCP transfers by HTTP.

QoS / UPQ measurement system

QoS Meter

UPQ Meter

Network
Emulator

TAP #1 TAP #2

File #1 File #2

Host PC #1 Host PC #2

DescriptorDescriptor

Data Flow

	
		
		
		
		
	�
��
��
��
��
��
��
��
��
��
�
�
�





















Fig. 6. Application performance assessment setup.

V. CONCLUSIONS

We have shown the versatility of FPGA-based hardware
platforms. Two Gigabit Ethernet applications were presented,
a network tester and a network emulator. The network tester
is currently used to evaluate network equipment intended to
be used in the ATLAS TDAQ network. The network emulator
is still in an intermediate stage of development. The basic
functionality is implemented and tests with applications will
be carried on in the near future.

The versatility of our platform derives from the fact that
different Gigabit Ethernet applications can be implemented on
the same board. The firmware provides a low-level library that
allows a modular design of the applications implemented on
this platform; the functions it provides are general enough to
allow building on them various applications. For each appli-
cation, custom functions can be easily added, an important
requirement in a research environment. Moreover, the use of
this platform provides a high-port density at a relatively low
cost.

Another application, which is used for traffic emulation
in the ATLAS data acquisition system, has already been
implemented [17]. Additional usages can be envisaged, such
as a monitoring system, similar to the one described in [21],
running at 1 Gb/s.



REFERENCES

[1] F. R. M. Barnes, R. Beuran, R. W. Dobinson, M. J. LeVine, B. Martin,
J. Lokier, and C. Meirosu, “Testing ethernet networks for the atlas data
collection system,” IEEE Trans. Nucl. Sci., vol. 49, pp. 516–520, Apr.
2002.

[2] R. Dobinson, S. Haas, K. Korcyl, M. J. LeVine, J. Lokier, B. Martin,
C. Meirosu, F. Saka, and K. Vella, “Testing and modeling ethernet
switches and networks for use in atlas high-level triggers,” IEEE Trans.
Nucl. Sci., vol. 48, no. 3, pp. 607–612, 2001.

[3] Y. Kodama, T. Kudoh, R. Takano, H. Sato, O. Tatebe, and S. Sekiguchi,
“Gnet-1: Gigabit ethernet network testbed,” in Proc. IEEE International
Conference on Cluster Computing (Cluster2004), 2004, pp. 185–192.

[4] Celoxica. Celoxica RC250 Platform. [Online]. Available: http://www.
celoxica.com/products/rc250/default.asp

[5] ——. The Handel-C Programming Language. [Online]. Available:
http://www.celoxica.com/technology/c design/handel-c.asp

[6] S. Bradner, “Benchmarking terminology for network interconnection
devices,” RFC 1242, July 1991.

[7] S. Bradner and J. McQuaid, “Benchmarking methodology for network
interconnect devices,” RFC 1944, Mar. 1999.

[8] R. Mandeville, “Benchmarking terminology for lan switching devices,”
RFC 2285, Feb. 1998.

[9] R. Mandeville and J. Perser, “Benchmarking methodology for lan
switching devices,” RFC 2889, Aug. 2000.

[10] Ixia. Ixia Performance Testing. [Online]. Available: http://www.ixiacom.
com/products/performance applications/

[11] Spirent. Smartbits. [Online]. Available: http://www.spirentcom.com/
[12] National Institute of Standards and Technology. NIST Net. [Online].

Available: http://snad.ncsl.nist.gov/itg/nistnet/

[13] M. Allman, A. Caldwell, and S. Ostermann, “One: The ohio network
emulator,” Ohio University Computer Science, USA, Tech. Rep. TR-
19972, Aug. 1997.

[14] Shunra. Shunra Virtual Enterprise. [Online]. Available: http://www.
shunra.com/products/VirtualEnterprise.php

[15] Candela Technologies. LANForge-ICE. [Online]. Available: http:
//www.candelatech.com/lanforge v3/lf marketing.html

[16] R. Beuran, M. Ivanovici, N. Davies, and B. Dobinson, “Evaluation of
the delivery qos characteristics of gigabit ethernet switches,” CERN,
Switzerland, Tech. Rep. CERN-OPEN-2005-002, Dec. 2004.

[17] M. Ciobotaru, S. Stancu, M. J. LeVine, and B. Martin, “GETB, a Gigabit
Ethernet Application Platform: its Use in the ATLAS TDAQ Network,”
in Proc. IEEE Real Time 2005 Conference, Stockholm, Sweden, June
2005, p. (to appear).

[18] The Python Programming Language. [Online]. Available: http:
//www.python.org/

[19] CERN. ATLAS—A Toroidal LHC ApparatuS. [Online]. Available:
http://www.atlas.ch/

[20] S. Bradner and J. McQuaid, “Benchmarking terminology for network
interconnect devices,” RFC 2544, May 1999.

[21] R. Beuran, M. Ivanovici, B. Dobinson, N. Davies, and P. Thompson,
“Network quality of service measurement system for application require-
ments evaluation,” in Proc. International Symposium on Performance
Evaluation of Computer and Telecommunication Systems, Montreal,
Canada, July 2004, pp. 380–387.

[22] R. Beuran, M. Ivanovici, and V. Buzuloiu, “File transfer perfor-
mance evaluation,” Scientific Bulletin of University “POLITEHNICA”
Bucureşti, vol. 66, no. 2-4, pp. 3–14, 2004.


