
IEICE TRANS. COMMUN., VOL.E95–B, NO.9 SEPTEMBER 2012

1

PAPER

Emulation Testbed for IEEE 802.15.4 Networked Systems

Razvan BEURAN†, Junya NAKATA††, Nonmembers, Yasuo TAN†††,Member,
and Yoichi SHINODA†††, Nonmember

SUMMARY IEEE 802.15.4 based devices are a key component for mo-

bile and pervasive computing. However, their small dimensions and re-

duced resources, together with the intrinsic properties of wireless commu-

nication, make it difficult to evaluate such networked systems through real-

world trials. In this paper we present an emulation testbed intended for the

evaluation of IEEE 802.15.4 networked systems. The testbed builds on the

generic framework of the wireless network testbed QOMB, and adds IEEE

802.15.4 network, processor and sensing emulation functionality. We vali-

dated the testbed through a series of experiments carried out both through

real-world trials in a smart home environment, and through emulation ex-

periments on our testbed. Our results show that one can accurately, and in

real time, execute IEEE 802.15.4 network applications on our testbed in an

emulated environment that reproduces closely the real scenario.

key words: IEEE 802.15.4, wireless network emulation, processor emula-

tion, sensor emulation, network testbed

1. Introduction

In recent years, the IEEE 802.15.4 standard has been used

for a multitude of purposes with application to the areas of

wireless personal area networks and home networks. The

resulting systems have three characteristics that make it dif-

ficult to conduct experiments: (i) they use wireless commu-

nication, which is prone to interference and high variability;

(ii) they are embedded, hence have small dimensions and

few resources; (iii) they are often designed for large-scale

deployments.

In this paper we present an alternative to real-world

trials for making realistic experiments with IEEE 802.15.4

networked systems by using the emulation paradigm, which

provides control, reproducibility, and scalability. Compared

to real-world trials, emulation makes it possible for the user

to better control the experiment environment, to repeat ex-

periments with ease, and to avoid constraints related to the

available number of physical devices or their resource lim-

itations. Compared to simulation, emulation provides in-

creased realism through its most significant feature, which

Manuscript received January 30, 2012.
Manuscript revised April 20, 2012.
†R. Beuran is with Hokuriku StarBED Technology Center, Na-

tional Institute of Information and Communications Technology,
Ishikawa, Japan.
††J. Nakata is with Uniden Corporation, Tokyo, Japan. This

work was done when he was with Hokuriku StarBED Technol-
ogy Center, National Institute of Information and Communications
Technology, Ishikawa, Japan.
†††Y. Tan and Y. Shinoda are with Japan Advanced Institute of

Science and Technology, Ishikawa, Japan.
DOI: 10.1587/transcom.E95.B.1

is real-time experiment execution that includes real compo-

nents. In our particular case this is achieved by running

without modification and in real time the emulated device

firmware on our testbed.

The emulation testbed that we present here is an ex-

tension of the emulation framework provided by the QOMB

wireless network emulation testbed [5]. In this paper we

present the components used to further extend the function-

ality of QOMB to make possible experiments with IEEE

802.15.4 networked systems. Such support must take into

account two main aspects: (i) emulate the IEEE 802.15.4

wireless communication between the devices; (ii) emulate

the functionality of the networked devices themselves, such

as firmware execution, and sensing. For functionality emu-

lation, in this work we have focused on JN5139, an 802.15.4

device manufactured by Jennic Ltd. [9].

The novelty of our work consists mainly in the way

in which we combined several components, such as net-

work emulation, processor emulation and sensor emulation

in order to make possible realistic experiments with IEEE

802.15.4 networked systems. The main contributions are:

1. The design and implementation of a hybrid approach

for networked system emulation, that considers inde-

pendently the PHY and MAC layers of IEEE 802.15.4;

2. A probabilistic model for the IEEE 802.15.4 PHY

layer, and an implementation of the IEEE 802.15.4

MAC layer;

3. The emulation of the processor and sensing functional-

ity of a JN5139-based system;

4. A comparison of emulation results obtained on QOMB

with those of real-world trials performed in a smart

home environment that demonstrate the correct oper-

ation of our emulation testbed.

A preliminary version of this work has been previously

presented at the AINA 2011 conference [4]. The current

paper extends our prior work as follows:

• A more detailed description of the emulation frame-

work that we designed and implemented (see in partic-

ular Section 2.3);

• A more thorough presentation of the components re-

lated to IEEE 802.15.4 PHY emulation, processor em-

ulation, and IEEE 802.15.4 MAC emulation (Sections

3, 4.1, and 4.2, respectively);

• An extension of the sensing functionality emulation

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. COMMUN., VOL.E95–B, NO.9 SEPTEMBER 2012

component to include humidity and light-level sensors

(Section 4.3);

• Two completely new series of experimental results that

clearly demonstrate the capabilities and accuracy of the

testbed through a comparison with real-world experi-

ments, both in static and mobile scenarios (Section 5).

The remainder of this paper is structured as follows. In

Section 2 we present an overview of the emulation testbed.

Next, we detail the mechanisms used to emulate the commu-

nication of IEEE 802.15.4 networked devices on our testbed

(Section 3). Section 4 describes the sub-components re-

quired in order to emulate the functionality of the devices

themselves. Then we present several experimental results

that validate the operation of our testbed (Section 5). Sec-

tion 6 discusses several research directions that are related

to our work. The paper ends with conclusions, acknowledg-

ments, and references.

2. Emulation Testbed Overview

The emulation testbed for IEEE 802.15.4 networked sys-

tems that we designed and implemented was created by ex-

tending the functionality of the QOMB wireless network

emulation testbed. QOMB was initially developed for IEEE

802.11a/b/g network emulation [5].

In this paper we describe the extension of QOMB for

IEEE 802.15.4 networked system emulation. This exten-

sion presented several technical challenges arising from the

fundamental differences between typical IEEE 802.11 and

IEEE 802.15.4 systems. Thus, 802.11 systems are usually

computers or equivalents, and the applications and proto-

cols are executed on normal CPUs; this makes it easier to

emulate them, since it is only requires to model the IEEE

802.11 communication, whereas the applications and proto-

cols are executed as such on the emulation hosts. On the

contrary, 802.15.4 systems are typically embedded devices

with sensing capabilities and with low computing resources,

using particular processors; this leads to the fact that, in ad-

dition to modeling the IEEE 802.15.4 communication, it be-

comes necessary to also emulate the processor and sensing

functionality of the target devices. Our approach in this re-

spect is detailed in Section 4. We note that this function-

ality extension was facilitated by the modular architecture

of QOMB and of its components, as demonstrated by our

previous work of adding support for active RFID tags [2].

To facilitate understanding our emulation framework,

we first introduce its building blocks. The logical hierar-

chy of the main elements that compose QOMB is shown in

Figure 1:

• The hardware infrastructure of the StarBED wired-

network testbed;

• The experiment-support software tool named Sprin-

gOS, used to manage experiments on StarBED;

• The experiment-support software tool named RUNE,

used to control ubiquitous network experiments on

StarBED;

Fig. 1 Logical hierarchy of the QOMB components.

• The wireless network emulation set of tools QOMET.

2.1 StarBED

StarBED is a large-scale wired-network testbed managed

by the National Institute of Information and Communica-

tions Technology of Japan at the Hokuriku StarBED Tech-

nology Center located in Ishikawa prefecture, Japan [13].

StarBED makes available for experiments more than 1100

PCs and the interconnecting network equipment. The large

number of experiment hosts, and the versatile network archi-

tecture of StarBED make it possible to conduct a wide range

of network experiments on this testbed. In our framework,

StarBED represents the physical infrastructure of QOMB.

In order to assist users in making large-scale experi-

ments, the StarBED team has developed two software tools,

named SpringOS and RUNE.

2.1.1 SpringOS

SpringOS is the fundamental experiment-support software

tool for StarBED. SpringOS allows users to perform com-

plex experiments with a large number of hosts in an easy

manner [13]. The functions of SpringOS can be divided into

two categories:

1. Experiment preparation: Configure the experiment

hosts and network so that they are ready for being used

in experiments;

2. Experiment execution: Effectively carry out the exper-

iment by executing in the required order the necessary

commands on the experiment hosts.

The use of SpringOS is mandatory for experiment

preparation, so as to get access to the StarBED infrastruc-

ture. However, the use of SpringOS is optional for experi-

ment execution, and is limited to IP network experiments. In

experiments which do no employ IP communication, such

as our work related to IEEE 802.15.4, the alternative system

RUNE must be used. Hence, in this paper we used Sprin-

gOS only for experiment preparation, and we used RUNE

instead for experiment execution.

2.1.2 RUNE

RUNE (Real-time Ubiquitous Network Emulation environ-

ment) is the experiment-support software tool aimed at mak-

ing possible on StarBED ubiquitous network emulation ex-

periments with a large number of devices [14]. Differently

BEURAN et al.: EMULATION TESTBED FOR IEEE 802.15.4 NETWORKED SYSTEMS

3

from SpringOS, RUNE has no restrictions regarding the

type of network used. Thus, RUNE was the ideal choice

for driving IEEE 802.15.4 networked system emulation on

StarBED.

RUNE experiments are globally managed by a module

called RUNEMaster that is executed on one of the StarBED

hosts. RUNE Master communicates with modules called

RUNE Manager, an instance of which is executed on each

StarBED host that takes part in a certain experiment.

The activity of the emulated devices is reproduced by

RUNE entities that are called spaces. All the spaces that

are being executed on an experiment host are controlled by

the local RUNE Manager on that host. Spaces commu-

nicate with each other via communication channels called

conduits. Conduits are abstract logical channels for pass-

ing messages between spaces with the assistance of RUNE

Managers. Network emulation (i.e., recreating realistic

communication conditions) is performed by using dedicated

spaces, which determinewhat packets are passed on via con-

duits and what packets are not (see Section 2.3).

2.2 QOMET

QOMET (Quality Observation and Mobility Experiment

Tools) is a set of tools for wireless network emulation that

provides the necessary mechanisms for performing this task

by reproducing the communication conditions between each

and every node in the experiment [3]. QOMET relies on

the experiment management mechanisms of StarBED for

its distributed execution that results in the emulation of the

overall network. The main features of QOMET are:

• Support for various wireless network technologies:

IEEE 802.11a/b/g, active RFID tag, and IEEE 802.15.4

(presented here);

• Support for 3D environments: The topography of the

emulated environment (streets and buildings), and the

antennas used for communication can be defined both

in 2D and 3D;

• Support for node mobility: Several models can be used

to describe the trajectory of the emulated nodes in the

virtual environment (random way, behavioral, etc.).

The core functionality of QOMET is provided through

the libraries called deltaQ and chanel. The deltaQ li-

brary is used to compute the communication conditions be-

tween wireless nodes given a user-defined scenario. The

library includes the implementation of models for wire-

less network technologies, propagation, and mobility. The

user-defined scenario represents the input of the deltaQ li-

brary, and is used to specify the properties of the wireless

nodes (position, network technology parameters, mobility

patterns), and of the environment in which they are placed

(attenuation, shadowing, street and building structures, and

so on). These properties are used to create a “virtual world”

that corresponds to the emulated scenario, in which the wire-

less nodes can move and communicate with each other.

The chanel library is used to recreate during the live

Fig. 2 Architecture of the QOMB emulation framework for IEEE

802.15.4 networked system experiments.

experiment the communication conditions computed by the

deltaQ library. The chanel library is basically in charge of

delivering the messages from a wireless node to all the other

nodes with which it can communicate according to the sce-

nario; this is done after applying the corresponding network

degradation (packet loss, delay, and bandwidth limitation)

that was computed by the deltaQ library. The chanel li-

brary is implemented using threads so that the input and out-

put queues can be processed in parallel. One instance of the

chanel library must be executed for each emulated device.

2.3 Emulation Framework

The integration of all the tools that we have mentioned so far

effectively gives birth to a new entity, the wireless network

emulation testbed QOMB. The architecture of the emulation

framework used for our experiments is shown in Figure 2.

RUNE is used to manage the experiment that is executed

on StarBED hosts via the global RUNE Master and the lo-

cal RUNEManager modules. Each RUNEManager module

controls the execution of one or more emulated 802.15.4 de-

vices. SpringOS is only used during the experiment prepa-

ration phase, as indicated in Section 2.1.1, and is not men-

tioned in the figure for clarity reasons.

A particularity of our design is the hybrid approach we

take to emulate the 802.15.4 networked devices. We decom-

posed the activity of the devices in two categories: com-

munication and control. Here communication refers exclu-

sively to the process of sending and receiving data, hence

corresponds to the IEEE 802.15.4 PHY layer. The control

category assembles several activities related to the function-

ality of the device itself, such as firmware execution and

sensing. Since the JN5139-based devices execute the IEEE

802.15.4 MAC layer on the device processor, we included it

in the category of control activities.

The above separation determines the way in which the

emulation process takes place in our framework. Thus, each

emulated 802.15.4 networked device is made of two ele-

ments, which are implemented as RUNE spaces: a commu-

4
IEICE TRANS. COMMUN., VOL.E95–B, NO.9 SEPTEMBER 2012

nication space and a control space (see Figure 2).

2.3.1 RUNE Spaces

The communication space is essentially used to recreate the

communication conditions between the emulated 802.15.4

networked devices in the experiment. This is accomplished

by employing the deltaQ and chanel libraries of QOMET.

In this context, the deltaQ library has been enhanced by

adding support for IEEE 802.15.4 PHY layer emulation

through the use of probabilistic models (see Section 3).

The control space reproduces the functionality of the

emulated devices, in other words their “behavior”. The

most important component of the control space is repre-

sented by the processor emulator, that emulates the execu-

tion of the JN5139 device processor, so as to allow using on

QOMB the same firmware with that running on actual de-

vices. Other components of the control space are related to

IEEE 802.15.4 MAC emulation, as well as to sensing func-

tionality emulation (see Section 4).

2.3.2 Jennic JN5139

As mentioned already, in this work we focused on the

device named JN5139, which is manufactured by Jennic

Ltd. (now part of NXP Semiconductors). The JN5139

is a general-purpose micro-controller that integrates a 32-

bit RISC processor with a fully compliant 2.4 GHz IEEE

802.15.4 transceiver. The processor has an OpenRISC ar-

chitecture and operates at 16 MHz. The memory consists of

192 kB ROM for system code, including protocol stack, and

96 kB RAM for system data and optional program code.

The JN5139 has other features such as comparators,

timers, counters, and various kinds of interfaces. In partic-

ular, the device that we emulate has on-board temperature,

humidity and light-level sensors, as well as an LCD display.

3. Communication Emulation

The communication space in Figure 2 is in charge of repro-

ducing the communication conditions between the emulated

802.15.4 devices. Practically, the communication space em-

ploys the chanel library to accomplish this task, hence to

deliver or drop the frames received from the control space,

depending on the state of the network.

The communication conditions that are recreated by

the chanel library are provided by the deltaQ library,

which was enhanced to include support for IEEE 802.15.4

PHY layer emulation. The modifications refer to the use

of specific models for the different characteristics of the

802.15.4 PHY layer, as well as for electromagnetic wave

propagation.

3.1 IEEE 802.15.4 PHY Emulation

In order to emulate the IEEE 802.15.4 PHY layer, a series of

models must be used to compute the frame error rate, delay

and bandwidth limitations that characterize the communi-

cation conditions of this layer. These parameters are then

applied to the frames that are received by the communica-

tion space from the control space before sending them to the

other emulated devices in order to recreate the communica-

tion conditions of the user-defined scenario.

The computation is done by starting from the proper-

ties of the virtual world in which the emulated devices are

located, and by taking into account the properties of the

802.15.4 PHY layer, in a hierarchical series of models.

For electromagnetic wave propagation we use the log-

distance path loss model [17], which gives the received

power at a distance d, Pr, as function of the received power

at the distance of 1 m when transmitting at 1 dBm, Pr0, the

attenuation coefficient α, the wall attenuation W, and the

standard deviation σ of the shadowing component (which

has a normal distribution with mean 0):

Pr = Pr0 − 10α · log10(d) −W + Xσ. (1)

The frame error rate FERS is computed in a probabilis-

tic manner from the received power:

FERS = FERS 0 · e
S−(Pr−N)−Nth , (2)

where S is the receive sensitivity threshold of the device

transceiver (provided by the manufacturer), FERS 0 is the

frame error rate when Pr reaches the threshold S (specified

by the IEEE 802.15.4 standard), N is the background noise

in the virtual environment, and Nth is the thermal noise.

Note that FERS 0 is specified by transceiver manufac-

turers for a particular frame size, that we denote by FS S ,

and which is equal to 20 bytes for IEEE 802.15.4. There-

fore, the result obtained from Equation (2) is specific to this

frame size. To extend the calculation of the frame error rate

to frames with arbitrary sizes, we use:

FER = 1 − (1 − FERS)
FS/FS S , (3)

where FS denotes the size in bytes of the frame for which

the generic frame error rate FER is calculated.

At PHY layer, frame delay is given by transmission de-

lay and propagation delay. Since the propagation delay, i.e.,

the time needed for electromagnetic waves to travel from

sender to receiver, is very small for 802.15.4 networks (un-

der 1µs), we only consider the transmission delay, D:

D = TPHY + TPSDU + TIFS , (4)

where TPHY is the duration of the PHY header, TPSDU is the

duration of the PHY payload, and TIFS is the duration of

the inter-frame spacing. TPHY is constant, and TIFS values

depend on frame size, being 192 µs for frames under 18

bytes, and 640 µs for larger frames. TPSDU is computed as:

TPSDU = (8 · FPSDU)/R, (5)

where FPSDU is the size of the PHY payload in bytes, and R

is the operating rate.

Considering the previous results, the amount of effec-

tive bandwidth that is available at the PHY layer is:

BEURAN et al.: EMULATION TESTBED FOR IEEE 802.15.4 NETWORKED SYSTEMS

5

Table 1 Parameter values for IEEE 802.15.4 PHY emulation

Parameter Value

Attenuation coefficient, α 4.02

Shadowing parameter, σ 0.0

Receive sensitivity, S -96 dBm

Error rate threshold at S , FERS 0.01

Frame size at S , FS S 20 bytes

PHY header duration, TPHY 192 µs

Inter-frame spacing, TIFS 192 or 640 µs

Thermal noise, Nth -105 dBm

Operating rate, R 250 kb/s

B =
TPHY + TPSDU

D
· R. (6)

3.2 Practical issues

The parameter values for the 802.15.4 PHY layer model

equations presented here are summarized in Table 1. These

values were used when performing the experiments that will

be described in Section 5.

The computed frame error rate, delay, and bandwidth

(FER, D, and B, given by Equations 3, 4, and 6, respec-

tively) represent the IEEE 802.15.4 PHY communication

conditions that correspond to the user-defined scenario. In

practice, the channel library used by the communication

space in our implementation only uses the frame error rate

parameter. This is because the delay and bandwidth in

our implementation are correctly reproduced as an effect of

the operation of the 802.15.4 MAC emulator in the control

space. Thus, the MAC emulator will output data with the

correct delay and bandwidth characteristics of the 802.15.4

MAC layer (including frame retransmission).

Regarding frame error rate emulation, the following

decisions are made in the communication space for each

frame incoming from the control space:

• If FER = 0, the frame is passed on as it is;

• If 0 < FER < 1, an error is introduced in the frame

with a probability equal to FER, and the frame is then

passed on;

• If FER = 1, the frame is dropped.

4. Functionality Emulation

The emulation of the functionality of the JN5139 device it-

self is performed by the control space that was shown in

Figure 2. The following three features were required:

• Processor emulation: Emulate the execution of the

OpenRISC processor of JN5139;

• IEEE 802.15.4 MAC emulation: Emulate the 802.15.4

MAC protocol;

• Sensing functionality emulation: Emulate the function-

ality of the JN5139 sensors.

The relationship between the three components that

implement these features in our emulation framework is

shown in Figure 3. The JN5139 firmware is executed by

Fig. 3 Relationship of the control space components.

the OpenRISC processor emulator exactly as it would be

executed on the real device. The firmware also receives in-

put from the sensor emulator, which is sensing the emulated

virtual environment, similarly to how the sensors would be

used in the real world.

The most important difference between the emulation

framework and the actual devices concerns the 802.15.4

MAC emulator. In the actual devices, the 802.15.4 MAC

protocol is implemented as a proprietary library by the man-

ufacturer of JN5139, Jennic Ltd. As such, it is executed on

the OpenRISC processor, similarly to the device firmware.

However, in our framework the processor emulator calls as

needed an equivalent 802.15.4 MAC implementation that is

executed natively on the PC host on which the emulated de-

vice is run. The rationale behind this decision and its impli-

cations will be discussed in Section 4.2.

Amongst the three components discussed here, proces-

sor emulation is the most device specific. Nevertheless, our

implementation could be employed for devices other than

JN5139 provided that they use the same OpenRISC proces-

sor (or a compatible one). The MAC emulation implemen-

tation is based on the IEEE 802.15.4 standard [8], hence it

is device independent. However, the source code was de-

signed and compiled for the particular operating system of

the PC hosts used in our experiments, which is FreeBSD.

The models used for sensor emulation are relatively generic

as well, hence usable in other cases too. Still, the particu-

lar values of the parameters we used during our experiments

were obtained through calibration using the real JN5139 de-

vices that we employed, and may need to be adjusted before

being used in the emulation of other devices.

4.1 Processor Emulation

The ability to execute the same firmware with the real de-

vices is in our view one of the most important requirements

for enabling realistic emulation experiments with 802.15.4

networked systems. The processor emulator that we im-

plemented is named ORE (OpenRISC Emulator), and it

supports the hardware components of the JN5139 micro-

controller, including memory and counters. Therefore ORE

can execute the same firmware with the JN5139 devices.

ORE intercepts the function calls related to the

802.15.4 MAC protocol, and passes them to the 802.15.4

MAC emulator module (see Section 4.2) without directly

executing any code. In the case the function calls produce an

output, this output is passed on to the firmware upon being

received from the MAC emulator. This is the most signifi-

cant difference between firmware execution by the processor

6
IEICE TRANS. COMMUN., VOL.E95–B, NO.9 SEPTEMBER 2012

emulator, and that taking place in the actual devices.

Thus, in our implementation, the ORE processor emu-

lator handles all firmware instructions except those related to

802.15.4 MAC operation, which are passed on to the MAC

emulator. The relationship of these two components of the

control space was shown in Figure 3, which represents the

MAC emulator as a distinct component which is neverthe-

less tightly integrated with the processor emulator.

4.2 IEEE 802.15.4 MAC Emulation

The IEEE 802.15.4 MAC functionality in our emulation

framework was recreated by implementing an equivalent to

the proprietary Jennic library that is used on the JN5139

devices. This alternative 802.15.4 MAC implementation,

named JLE (Jennic Library Emulator), runs as a separate

module in the control space, and not on the processor emu-

lator: a difference compared to the actual device. The reason

for introducing this difference in our design is the follow-

ing. Supporting 802.15.4 MAC protocol functions would

require to also implement the 802.15.4 transceiver. More-

over, this hypothetical solution requires executing the MAC

implementation on the emulated device processor.

In our implementation, the equivalent functionality is

provided by JLE, which is executed natively on the CPU

of the experiment host. Native execution leads to a signif-

icantly faster execution compared to the case when the in-

structions would be executed by the processor emulator. For

instance, when considering an experiment host with a 1.6

GHz CPU versus the 16 MHz RISC processor of JN5139,

the execution could be up to about 100 times faster. Hence,

our approach has the advantage of simplifying the overall

emulator design, and also of speeding up execution. As a

result, emulation performance is significantly improved, and

our emulation testbed can support more easily the live exe-

cution of 802.15.4 application firmware.

A potential issue in this context is the following. Given

the faster execution of the MAC primitives by the MAC em-

ulator, one may think that the 802.15.4 MAC layer will ac-

tually run faster on our emulation testbed that it would do

on real JN5139 devices. We stress that the execution speed

difference is compensated in regard to overall timing by the

absolute delays built into the MAC protocol, which corre-

spond to absolute delays that are reproduced on our emu-

lation testbed. This makes that, although the execution of

the MAC primitives is faster (freeing CPU time for other

tasks), overall the MAC emulator produces and consumes

messages in the same way with the actual devices, and in

synchronization with the wall clock.

Nevertheless, the execution of the firmware instruc-

tions on our emulation testbed is done in a loosely-coupled

manner compared to that in the actual devices. This is be-

cause on the emulation testbed general-purpose and MAC-

related instructions are executed by two different entities,

ORE and JLE, whereas they are executed sequentially by

the OpenRISC processor in the actual devices. The sequen-

tial nature of these operations is enforced in our implemen-

tation, and we have detected no out-of-order issues in our

experiments. Moreover, we have not noticed any adverse

effect of this loose synchronization on the operation of the

emulated devices, hence it appears to pose no problem on

our emulation testbed.

As a related matter, we note that we use no specific dis-

tributed time synchronization mechanism in our testbed. In-

stead, each time-critical component synchronizes itself with

the local clock of the PC on which it is run by timing its own

execution. Moreover, all the PCs are synchronized with a

time source via NTP (Network Time Protocol). This method

ensured sufficient time accuracy for our purposes.

4.3 Sensing Functionality Emulation

The JN5139 device has on-board temperature, humidity, and

light-level sensors. All the three sensors are supported by

the processor emulator from the point of view of the inter-

action with them through a memory-mapped register access

mechanism. Nevertheless, the sensor data obtained from

these registers must be close to reality in order to make re-

alistic experiments possible. Thus, it was necessary to also

model the sensing functionality of the sensors itself, and this

was done separately for each type of sensor.

4.3.1 Sensor Models

One of the widely-used models for taking into account the

dynamic behavior of sensors is the “thermal time constant

model”, often used for thermal sensors [12]. Following this

model, the equation for computing the temperature reading

of the thermal sensor at time t after the sensor is brought into

a certain environment, that we denote by T (t), is:

T (t) = TA − (TA − T0)e
−t/Cth , (7)

where TA is the ambient environment temperature to which

the sensor is adapting, T0 is the initial temperature reading

of the sensor upon entering the environment, and Cth is the

thermal time constant of the sensor.

Intuitively, the time constant Cth indicates how quickly

the reading of the sensor approaches in an asymptotic man-

ner the ambient temperature. A low value of Cth leads to a

faster adaptation, and a large value leads to a slower one.

We consider the dynamic behavior of the humidity sen-

sor to be similar to that of the thermal sensor, as it has to

adapt its reading to the ambient humidity in a resembling

manner. Therefore, we use a similar equation for modeling

the humidity reading of the sensor at time t after the sensor

is brought into a certain environment, denoted by H(t):

H(t) = HA − (HA − H0)e
−t/Chum , (8)

where HA is the ambient environment humidity to which the

sensor is adapting, H0 is the initial humidity reading of the

sensor upon entering the environment, and Chum is the hu-

midity time constant of the sensor.

For practical purposes it can be considered that the

BEURAN et al.: EMULATION TESTBED FOR IEEE 802.15.4 NETWORKED SYSTEMS

7

reading of a light-level sensor reflects instantaneously the

illumination of the environment into which it is brought.

Therefore, the light-level reading of the sensor at time t af-

ter the sensor is brought into a certain environment, that we

denote by L(t), is given in our emulation framework by:

L(t) = LA, (9)

where LA is the ambient environment light level to which

the sensor is adapting. We note that the above equation is a

particular case of the previous ones where the time constant

is made equal to 0, signifying infinitely fast adaptation.

4.3.2 Ambient Parameters

The above models were implemented as a third component

of the control space, in charge of sensor emulation (cf. Fig-

ure 3), and used to compute the sensor readings that are pro-

vided to the firmware executed in the emulation framework.

The input for the sensor models consists of ambient charac-

teristics (temperature, humidity, and light level) for each of

the areas in the emulated virtual environment.

Regarding ambient parameters, there are two important

issues that need further clarification: (i) how the ambient

parameters are determined for a certain target environment;

(ii) how the ambient parameters are managed within the em-

ulated environment.

The ambient parameters for the target environment

must be determined from sensor readings obtained from sen-

sors placed in that environment. In the most basic scenario,

one sensor is used for each area of interest, as we have done

for the experiments reported in this paper. In particular, we

used for this purpose the sensor readings of the sensors built

into JN5139 devices that were deployed in the smart-home

environment used in our real-world experiments. In order

to gather more detailed information, it is also possible to

place multiple sensors for each area, for instance 8 sensors

per room: four in each corner of the floor, and four in each

corner of the ceiling. Moreover, another possibility is to use

a three-dimensional grid of sensors deployed for each area

of interest for which ambient characteristics need to be de-

termined in great detail.

Although in this paper we have only used the first ap-

proach (one sensor per area), the other two approaches were

used in experiments that we have carried out for different

purposes. Advantages of the first method are its simplicity,

and the fact that the average sensor readings of the real sen-

sor in a certain interval can be passed directly as input am-

bient parameters to the emulated sensor (assuming that their

spatial position is equivalent, as it was in our experiments).

If the position of the emulated sensor is different from those

of the real ones, then the multiple sensor readings obtained

in the other approaches should be combined in order to esti-

mate the ambient parameters at the location of the emulated

sensor. For temperature, for instance, we did this using heat

propagation equations.

As for the management of ambient parameters in the

Table 2 Empirically-determined time constants for the sensor emulation

models

Constant name Empirical value

Thermal time constant, Cth 340

Humidity time constant, Chum 20

emulated environment, we note that the sensor value corre-

sponding to a certain emulated device takes into account the

area in which that device is located. Thus, static nodes are

assigned a fixed position during the entire duration of the

experiment, and this position is used to determine the area

in which they are located. Mobile nodes on the other hand

may be located in different areas depending on the current

time in the experiment. The area in which a mobile node is

located at a certain time is determined by taking into account

the trajectory of the node and the topography of the virtual

environment. The area information is then used to calcu-

late the corresponding ambient parameters for that moment

of time and place based on the procedure explained in the

previous paragraphs.

It is important to note that our current approach as-

sumes that ambient conditions are constant, and this is a

good approximation for our experiments, which never ex-

ceeded 15 minutes. However, for longer experiments it is

necessary to also take into account the variation of the am-

bient conditions, and their dependence on time.

Moreover, we emphasize the fact that the time con-

stant sensor characteristics that we used as parameters in our

models are not provided by all manufacturers. In that case,

either generic values can be used, or the characteristics of

the sensors can be determined by the researchers themselves

through simple field trials; the latter is the approach that we

have taken in our experiments. Table 2 shows the values

that we determined for the sensors in the JN5139 device by

calibrating the time constant parameters through real-world

measurements.

5. Experimental Results

In this section we present several series of experimental re-

sults in static and mobile scenarios that validate the func-

tionality of our testbed and demonstrate its applicability.

5.1 Experiment Methodology

The methodology used for our testbed validation is to per-

form similar experiments by using actual IEEE 802.15.4

sensor nodes in a real environment, and also by using the

emulation testbed that reproduces an equivalent environ-

ment.

5.1.1 Sensor Nodes

The actual IEEE 802.15.4 sensor nodes used in our experi-

ments are based on JN5139. The application firmware used

was provided by the company Fujitsu Nagano Systems En-

gineering Ltd., which also manufactured the sensor nodes

8
IEICE TRANS. COMMUN., VOL.E95–B, NO.9 SEPTEMBER 2012

that we effectively used. The functionality of the sensor

nodes is divided into two classes, based on their role from

an 802.15.4 network point of view, namely:

• Coordinators: Form the root of the 802.15.4 network

star topology, and can bridge to other networks if con-

figured to do so;

• End devices: Connect to the root node of the star topol-

ogy, and perform the sensing function.

As a consequence, any experimentmust include at least

one coordinator node, and one or more end device nodes.

While the coordinator only has network-related functional-

ity, the end devices are also performing the sensing activity.

In particular, each end device, once connected to a coordina-

tor, will send at regular intervals (configured to 10 s) sensor

data to the coordinator.

In our experiments, the coordinators were connected

via a USB cable to a notebook PC. The USB cable was used

in our case only to power the devices, but could also be used

to log data from coordinators. On the other hand, the end de-

vices were all battery powered. Note that we didn’t consider

the effects of battery depletion on experimental results, since

all our experiments had a relatively short duration. This is-

sue is being considered as future work.

In order to capture the traffic in the 802.15.4 network,

we employed the CC2531 802.15.4 USB dongles from

Texas Instruments [19]. The associated software was used to

log all the communication between the nodes in our exper-

iment onto the notebook to which a certain dongle was at-

tached. The dongles were placed near the coordinator nodes

in our experiment, such as to have a “view” of the network

similar to that of a coordinator, but without the additional

overhead of using the coordinator itself for this task. This

approach also relied on the fact that the USB dongles and

JN5139 devices have the same receive sensitivity.

5.1.2 iHouse Smart Home

The devices that we emulated, Jennic JN5139, are well

suited for being used in a smart home environment, given

that fact that they are equippedwith sensors for temperature,

humidity and light level. As a consequence, we performed

real-world trials in such a smart home environment, located

in the vicinity of our research center, in Ishikawa prefecture,

Japan. A photograph of the smart home, named iHouse, is

shown in Figure 4. The room layout for each floor of iHouse

is presented in Figure 5.

The iHouse includes networked equipment such as air

conditioners, windows, blinds, etc. It is possible both to ob-

tain the state of the equipment (e.g., the temperature reading

and air flow speed for air conditioners, the state of the win-

dows, or the deployed length for the blinds) and to control

the equipment (e.g., change the temperature setting of the

air conditioner, open or close the windows, extend or retract

the blinds) using the network connectivity of these appli-

ances. A detailed description of iHouse in available in [18]

(in Japanese).

Fig. 4 The smart home iHouse used in our real-world trials and emula-

tion experiments.

5.1.3 Basic Emulation Environment

Our emulation environment was based on the room layout

of iHouse shown in Figure 5. This allowed us, first of all, to

illustrate the capabilities of our 802.15.4 network emulation

testbed in a home network scenario. Secondly, this made it

possible to use the actual house as a validation environment

for our emulation testbed. This is important considering that

the emulation testbed is intended for extending the scale of

the experiments that can be performed in the actual house.

For instance, one could use more sensors in the virtual en-

vironment than physically available in the real house, or do

experiments in different environment conditions (tempera-

ture, humidity, etc.) than it would be possible to do in the

real world at a certain time.

The steps necessary in order to emulate the iHouse on

our testbed are summarized below. Note that although these

steps are given for the particular case of iHouse, the method-

ology is by no means restricted to this environment, and

could be in principle applied to any other environment for

which a virtual representation needs to be created. The re-

quired actions for this purpose are:

1. Model the topography of the environment: We created

a simplified 3D representation of iHouse in QOMET

based on the construction data used to build the actual

house. Simplifications were done in the shape of the

rooms and of the stairs, and also by eliminating com-

ponents that are not relevant for our experiments, such

as the roof;

2. Determine the communication properties of the envi-

ronment: We conducted a series of basic measurements

in which we placed two sensor nodes at a known dis-

tance with respect to each other in three scenarios:

(i) unobstructed communication; (ii) communication

through a wall of iHouse; (iii) communication through

the ceiling between the first and the second floors of

iHouse.

For the basic experiments mentioned above, the

JN5139 nodes were located at 2 m from each other in all

three scenarios; the experiments were repeated 5 times. By

comparing the signal strength results, more specifically the

RSSI (Received Signal Strength Indication) values, for the

BEURAN et al.: EMULATION TESTBED FOR IEEE 802.15.4 NETWORKED SYSTEMS

9

Table 3 Empirically-determined communication parameters for iHouse

Parameter name Empirical value

Wall attenuation 6.03 dBm

Ceiling attenuation 14.30 dBm

Indoor boost 8.38 dBm

unobstructed communication case with the other two cases,

we were able to estimate the wall attenuation, as well as the

ceiling attenuation for iHouse. We also conducted a similar

unobstructed experiment in an outdoor setting. Comparing

the RSSI values for the indoor and outdoor settings, we were

also able to determine the boost of the signal strength in the

indoor case, typically caused by reflections from the walls.

These empirical values are given in Table 3.

By using the communication parameter values in the

QOMET scenario representation, we were able to create a

virtual environment that has similar communication prop-

erties with iHouse. This environment was used as a basis

for all our subsequent emulation experiments. Note that, in

addition to obstacle attenuation, QOMET also uses a prop-

agation attenuation coefficient and a shadowing constant in

the communication model (see Equation 1). For the propa-

gation attenuation coefficient we used the value 4.02, which

is considered typical for indoor environments [7]. We also

made the simplifying assumption of having no shadowing

effects, hence the σ parameter in Equation 1 was 0.

5.2 Static Experiments

Our real-world trials in iHouse started with several series

of static experiments using up to 2 coordinators and 7 end

devices. Their placement is shown in Figure 5, where coor-

dinators are denoted by “CN”, and end devices by “ED”.

For the first series of experiments, only the coordina-

tor at the second floor was activated, and all the end de-

vices had to associate with it. In the beginning, only one

end device was activated at a time for a period of 10 min-

utes. The purpose of these preliminary experiments was to

validate whether each end device can communicate with the

coordinator. The results showed that this was indeed the

case. We also determined that frame error rate had accept-

able values for most rooms (not exceeding 13% in the worst

case), and that the variability of RSSI was low (worst-case

standard deviation not exceeding 3).

We then proceeded with more realistic experiments, in

which again the coordinator at the second floor was used,

and all the 7 end devices were active during the entire ex-

periment, which lasted 10 minutes. This type of experiment

was repeated 2 times. For each experiment we determined

the average RSSI, the frame error rate, as well as the average

temperature, humidity and light-level readings.

The same experiment was performed through emula-

tion on QOMB. The virtual environment was based on that

described in Section 5.1.3; the coordinator and end devices

were also placed in the virtual environment at equivalent lo-

cations with those in iHouse. The average RSSI values com-

puted by QOMET were used to calibrate the environment

attenuation parameters so as to account for the complexity

of the actual 3D structure of iHouse. The emulation exper-

iments were then run in a similar manner to the previously-

described real-world trials.

In Figure 6 we compare the average RSSI per end de-

vice in the two real-world trials with the RSSI value com-

puted by QOMET. Each end device is labeled with the name

of the room in which it was placed. The experimental values

match well our computation, with the largest differences, of

about 10%, being observed for the “Dining” room.

In Figure 7 we compare the frame error rate for each

end device in the two real-world trials with the FER com-

puted by QOMET, and also with the FER measured for the

emulation experiment on QOMB. Again the real-world trial

results match well both the computation and the measure-

ments done on the emulation testbed. We noted a larger

difference for the “Kitchen” area. However, this difference

of less than 15% is only between the measured FER and the

other results, and we expect that it is caused by the relatively

low number of packets involved in the experiment. Sending

one sensor data packet every 10 s resulted in a total of 60

packets during our 10 minute experiments; this relatively

small number of packets can lead to statistical differences

when packet loss is introduced in a probabilistic manner as

done in our implementation. We also noticed an unexpect-

edly high FER value for the “Bedroom” area in the first real-

world trial, that we attribute to transient effects, since the

other trials produced values closer to our expectations.

In Figures 8 and 9 we compare the results obtained for

temperature and light level, respectively (humidity results

were similar, hence we omit them because of space con-

siderations). The virtual environment settings were config-

ured to match the conditions in iHouse, and our results show

that the sensor readings of the emulated devices match well

those of the actual ones. We note that the light level for

the “Bedroom” area differs by about 15% between the two

real-world trials; we assume this difference was caused by

a slight change of the orientation of the actual sensor in-

between experiments, hence it is not significant.

For another series of experiments, we activated both

coordinators shown in Figure 5. In this case, the end de-

vices at the first floor of iHouse associated with the coor-

dinator at the first floor, and the end devices at the second

floor of iHouse with the coordinator at the second floor. The

separation was ensured by using different identifiers for the

two networks. Similarly to the results presented before, a

good match was observed between real-world trials and em-

ulation; results are omitted because of space considerations.

5.3 Mobility Experiments

The experiments presented so far did not assess the dynamic

behavior of the sensors that we emulate, since they only fo-

cused on static conditions. In order to investigate this second

aspect, we performed several mobility experiments both in

iHouse and through emulation.

We present here a full-scale experiment in which a per-

10
IEICE TRANS. COMMUN., VOL.E95–B, NO.9 SEPTEMBER 2012

Fig. 5 Setup for static experiments indicating the position of the sensor nodes in iHouse.

Dining JapaneseKitchen Bedroom Spare Western1Western2
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

1F rooms 2F rooms

A
v
e

ra
g

e
 R

S
S

I
[d

B
m

]

Real−world trial #1

Real−world trial #2

QOMET computed

Fig. 6 Average RSSI in the real-world trials, and as computed by

QOMET for each room in iHouse (static experiments).

Dining JapaneseKitchen Bedroom Spare Western1Western2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1F rooms 2F rooms

F
ra

m
e

 E
rr

o
r

ra
te

 (
F

E
R

)

Real−world trial #1

Real−world trial #2

QOMET computed

QOMB experiment

Fig. 7 Frame error rate in the real-world trials, as computed by QOMET,

and as measured on QOMB for each room in iHouse (static experiments).

son moves through all the rooms of iHouse while carrying

a sensor node working in end-device operation mode. This

experiment lasted a total of 15 minutes, with about 2 min-

utes spent in each of the seven rooms of iHouse. The ex-

Dining JapaneseKitchen Bedroom Spare Western1Western2
0

5

10

15

20

25

1F rooms 2F rooms

A
v
e

ra
g

e
 t

e
m

p
e

ra
tu

re
 [°

C
]

Real−world trial #1

Real−world trial #2

QOMB experiment

Fig. 8 Average temperature in the real-world trials, and as measured on

QOMB for each room in iHouse (static experiments).

Dining JapaneseKitchen Bedroom Spare Western1Western2
0

100

200

300

400

500

600

700

1F rooms 2F rooms

A
v
e

ra
g

e
 l
ig

h
t

le
v
e

l
[l
u

x
]

Real−world trial #1

Real−world trial #2

QOMB experiment

Fig. 9 Average light level in the real-world trials, and as measured on

QOMB for each room in iHouse (static experiments).

periment was repeated two times, trying to ensure that the

motion followed the same trajectory. The motion path is

shown in Figure 10. The person moved from the entrance

area at the first floor (the start position at time 0 minutes) to

BEURAN et al.: EMULATION TESTBED FOR IEEE 802.15.4 NETWORKED SYSTEMS

11

Table 4 Motion start time for each room in iHouse

Area name Start time [min.] Area name Start time [min.]

Entrance 0 Western 1 9

Kitchen 2 Western 2 11

Dining 4 Bedroom 13

Japanese 6 Spare N/A

the kitchen, then to the dining and Japanese rooms. Follow-

ing that, the person climbed to the second floor, where he

entered the Western room 1, the Western room 2, then the

bedroom. Finally the person entered the spare room, where

he stayed until the end of the experiment, at time 15minutes.

Motion start times in minutes are shown in Table 4.

Figures 11 and 12 show the variation of the temperature

and humidity versus time, respectively. The comparison is

done between two real-world trials and the two correspond-

ing emulation experiments. Although the result variation is

similar in the two real-world trials, the absolute values are

different, reflecting slightly different conditions in the areas

of iHouse at different moments of time (the two real-world

trials were done at half an hour interval). As a consequence,

when running the equivalent emulation experimentswe used

different settings for the temperature and humidity of the

various areas of interest in the virtual environment.

In the case of temperature, results match very well,

with the most important differences observed in the interval

around the time 7 minutes in Figure 11. The explanation is

that this interval includes the person’s motion on the stairs.

The stairs were not modeled from a sensing point of view

in our emulation environment, i.e., they were not assigned

specific characteristics, such as temperature and humidity.

In the actual iHouse, the temperature on the stairs was lower

than that of the other areas, and this lead to lower sensor

readings while the person used the stairs. Despite this, the

maximum local difference between real-world trial and em-

ulation temperature measurements in our experiments is of

about 0.5◦C (i.e., about 2.5% of the average temperature).

For humidity, the match is less good, and this is mostly

because the humidity sensor of the actual devices does not

have a very good resolution. Our experimental data shows

that this resolution is of about 0.5% (see, for instance, the os-

cillations in the interval between 1 and 4 minutes in Figure

12 for the humidity sensor readings obtained in real-world

trial #1; by contrast, the temperature sensor has a much

finer resolution, estimated to be around 1/100 ◦C, as demon-

strated by the smooth variation in Figure 11). The sensor

calculations in our emulator uses floating point arithmetic

in all cases, which leads to some intrinsic differences be-

tween real-world trial and emulation humidity sensor read-

ings. One other thing to note in Figure 12 is the difference in

the interval around the time 7 minutes, which is caused by

the motion on the stairs in iHouse (which had a higher hu-

midity compared to other areas). The maximum local differ-

ence between real-world trial and emulation humidity mea-

surements in our experiments is of about 1.5% (i.e., about

3.5% of the average humidity value). The explanation we

have given in the previous paragraph regarding temperature

Table 5 Mean differences between real-world trial and emulation sensor

data (mobility experiments)

Sensor data type MAE RMSE

Temperature (experiment #1) 0.09◦C 0.13◦C

Temperature (experiment #2) 0.08◦C 0.10◦C

Humidity (experiment #1) 0.41% 0.53%

Humidity (experiment #2) 0.30% 0.42%

differences applies in this case as well.

The differences between our results from real-world

trials and emulation experiments are quantified in a global

manner in Table 5 by using the mean absolute error (MAE)

and the root mean square error (RMSE) as metrics. The re-

sults show that the global error is around 0.1◦C for tempera-

ture, and around 0.5% for humidity, which are equivalent to

about 0.5% and 1% of the average values, respectively.

We note that the light-level sensor data results for our

mobility experiments were inconclusive because the sensor

was occasionally covered during the movement. Moreover,

given the instant variation of the readings for the light-level

sensor, it would be difficult to provide through emulation

dynamic results that are close-enough to real-world trials,

unless the virtual environment model of iHouse includes all

the light sources (windows, lights, etc.), their position, lumi-

nosity, etc. Therefore, in this work we only relied on static

scenarios for light-level sensor emulation evaluation, as pre-

sented in Section 5.2.

5.4 Discussion

Our experimental results demonstrated that QOMB is able

to emulate with sufficient accuracy various static and mo-

bile scenarios in our smart home environment. These exper-

iments allowed us to validate the operation of the emulation

testbed, and to prove that it performs according to expec-

tations when compared to real-world trials. Our validation

procedure was twofold:

• From a network perspective, through results such as

average RSSI and frame error rate;

• From a sensing perspective, through results such as av-

erage temperature, humidity, and light level.

In all cases we observed a good match between the

real-world trial measurements and those made on QOMB

for emulation experiments, both for network parameters and

sensor readings. Our experiments demonstrate that the sens-

ing application behaves in the same manner both when ex-

ecuted on our 802.15.4 emulation testbed and in the real-

world trials.

Such realistic experiments make possible several ways

to employ our emulation testbed, as follows:

1. Use it in advance of real-world trials: To ensure that

a certain IEEE 802.15.4 network application functions

as expected in different operation scenarios;

2. Use it in addition to real-world trials: To enable ex-

periments that require repeatability and control of the

conditions, or to perform larger-scale experiments;

12
IEICE TRANS. COMMUN., VOL.E95–B, NO.9 SEPTEMBER 2012

Fig. 10 Setup for mobility experiments in iHouse showing the trajectory of the mobile sensor node.

0 5 10 15
18

19

20

21

22

23

24

Time [min.]

T
e

m
p

e
ra

tu
re

 [°
C

]

Real−world trial #1

Real−world trial #2

QOMB experiment #1

QOMB experiment #2

Fig. 11 Temperature variation in the real-world trials, and as measured

on QOMB (mobility experiments).

3. Use it as a component of real-world trials: Integrate

real devices with emulated ones in the same experiment

so as to combine the benefits of the two techniques.

While all the uses above are of great importance, we

believe that the third approach of integrating real and emu-

lated devices is particularly promising. The main advantage

of such an approach is the ability to make experiments with

devices that are too difficult or too expensive to model, with-

out requiring to actually deploy the full system, and also

while maintaining the benefits of emulation (repeatability,

control, scalability). In the smart home context, we sug-

gest that our testbed could be used for the development of

an intelligent environment control system that uses the data

provided by the sensors. Instead of modeling various actu-

ators, such as air conditioner and blinds, one could use the

actual devices in iHouse, whereas the sensing aspects would

be emulated on QOMB. In this manner one could validate

the correct operation of the system both from the point of

view of the communication protocol, and also by making

experiments in a wide-range of scenarios.

0 5 10 15
36

38

40

42

44

46

48

Time [min.]

H
u

m
id

it
y
 [

%
]

Real world #1

Real world #2

QOMB exp. #1

QOMB exp. #2

Fig. 12 Humidity variation in the real-world trials, and as measured on

QOMB (mobility experiments).

6. Related Work

To the best of our knowledge, no framework having an iden-

tical functionality with our IEEE 802.15.4 networked sys-

tem emulation testbed currently exists. There are, however,

several approaches and tools that are related to our research.

We present next the most important of them.

The system that is closest to our design is perhaps the

COOJA simulator for the Contiki OS [15]. COOJA uses

an original cross-layer simulation approach to execute Con-

tiki OS programs either as compiled native code on the host

CPU, or in an instruction-level device CPU emulator (e.g.,

TIMSP430). Similar to COOJA, TOSSIM is a TinyOSmote

simulator targeting the development of sensor network ap-

plications [11]. It is said to scales to thousands of nodes, and

it compiles directly from TinyOS code. As with our testbed,

developers can test their algorithm implementations, albeit

through simulation. Another system, ATEMU, is a simu-

lator for systems based on the Atmel AVR processor [16].

It also includes support for other peripheral devices on the

BEURAN et al.: EMULATION TESTBED FOR IEEE 802.15.4 NETWORKED SYSTEMS

13

MICA2 sensor node platform [6], such as the radio inter-

face. ATEMU can be used to conduct studies in a controlled

simulation environment, and is compatible at binary level

with the MICA2 hardware.

All these frameworks are essentially simulators focus-

ing on particular processors and the code execution for those

processors. Therefore, they often use very simple models

for the wireless communication (for instance, ATEMU only

supports free-space propagation) and for sensing. Moreover,

they provide no guarantee as to how much slower or faster

than the wall clock experiment execution is. Our testbed has

none of these drawbacks, as we use a more advanced prob-

abilistic model for wireless communication, we included

models and emulation of the sensing functionality, and we

execute the firmware in real time.

SensorRAUM is another related project whose goal is

to create a quasi-realistic virtual representation of the physi-

cal environment [1]. This representationmakes it possible to

have interactions between real sensors and the virtual world.

By emulating the sensors too, we give the user more control

over the experiment.

The general-purpose testbed that is Emulab includes a

sensor network testbed. The sensor network testbed con-

sists of 25 MICA2 motes that can be used remotely for ex-

periments [20]. Another sensor testbed is MoteLab [21],

which consists of a set of permanently deployed sensor net-

work nodes connected to a central server which handles their

management. Even though both Emulab and MoteLab are

controlled environments, the devices used in these testbeds

are real, hence subject to potential wireless interferences.

Moreover, no mobility experiments are possible on these

testbeds. Mobile Emulab uses robots to perform motion in

a reproducible manner [10]. However, the communication

is still subject to potential undesired influences. In addition,

the mobility range and speed of the robots are limited.

Several wireless network emulation testbeds exist, but

they are mainly related to IEEE 802.11 networks. A system

such as TWINE uses computer models to perform real-time

experiments [22]. Thus, it avoids undesired interferences

and side effects, in a similar manner to the approach used

by QOMB for IEEE 802.15.4. However, our testbed imple-

ments both 802.15.4 network emulation, and the emulation

of the hardware of actual 802.15.4 devices, resulting in a

more realistic system.

7. Conclusion

In this paper we presented an emulation testbed for IEEE

802.15.4 networked systems that can be used to perform

repeatable experiments in a controlled environment. The

testbed is built by extending the functionality of the wire-

less network emulation testbed called QOMB, that was pre-

viously created by the integration of the large-scale wired-

network testbed StarBED with the wireless network emula-

tion set of tools QOMET.

The extension of QOMB for 802.15.4 experiments was

accomplished by adding, first of all, support for the 802.15.4

PHY layer, through a probabilistic communication model,

and for the 802.15.4 MAC layer, through the implementa-

tion of the corresponding primitives. Furthermore, we im-

plemented a processor emulator for an actual 802.15.4 de-

vice, namely the Jennic JN5139. The processor emulator al-

lows running in real time on the emulation testbed the same

binary firmware that is executed on the real JN5139 devices.

The sensing functionality of JN5139 is also emulated for

temperature, humidity, and light level sensors.

Our emulation testbed enables realistic experiments

with IEEE 802.15.4 networked systems. Its operation was

validated through several series of experiments, both in

static and mobile scenarios. The differences between the

results obtained in real-world trials and those of emulation

experiments did not exceed more than a few percents.

A current limitation of our testbed is that it doesn’t con-

sider the power consumption of the sensor nodes. Therefore,

we intend to add such support, which is important in scenar-

ios with battery-operated sensors. In addition, we envisage

exploring in more detail the challenges related to performing

experiments that combine real and emulated devices, which

we consider very promising.

Acknowledgments

The authors are grateful to Takashi Okada for his support

related to the use of the JN5139 devices. We also thank

Yuki Hirakawa and Prof. Ikuko Yairi for their assistance in

performing some of the real-world trials presented here, and

for the 3D modeling required in our experiments.

References

[1] M. Beigl, SensorRAUM, http://www.duslab.de/sensorraum/.

[2] R. Beuran, J. Nakata, T. Okada, T. Kawakami, K. Chinen, Y. Tan,

and Y. Shinoda, Emulation framework for the design and develop-

ment of active RFID tag systems, Journal of Ambient Intelligence

and Smart Environments (JAISE), IOS Press, vol. 2, no. 2, April

2010, pp. 155-177.

[3] R. Beuran, J. Nakata, T. Okada, L. T. Nguyen, Y. Tan, and Y. Shin-

oda, A Multi-purpose Wireless Network Emulator: QOMET, IEEE

Intl. Conf. on Advanced Information Networking and Applications

(AINA 2008), FINA 2008 symposium, Okinawa, Japan, March 25-

28, 2008, pp. 223-228.

[4] R. Beuran, J. Nakata, Y. Tan, and Y. Shinoda, IEEE 802.15.4 Net-

work Emulation Testbed, IEEE Intl. Conf. on Advanced Information

Networking and Applications (AINA 2011), Biopolis, Singapore,

March 22-25, 2011, pp. 451-458.

[5] R. Beuran, L. T. Nguyen, T. Miyachi, J. Nakata, K. Chinen, Y. Tan,

and Y. Shinoda, QOMB: A Wireless Network Emulation Testbed,

IEEE Global Communications Conference (GLOBECOM 2009),

Honolulu, Hawaii, USA, November 30-December 4, 2009.

[6] Crossbow Technologies, MICA2 Wireless Modules,

http://www.xbow.com.

[7] D. B. Faria, Modeling signal attenuation in IEEE 802.11 wireless

LANs, Technical Report TRKP06-01187, Stanford University, Palo

Alto, California, USA, July 2005.

[8] IEEE Standard 802.15.4-2006: Wireless Medium Access Control

(MAC) and Physical Layer (PHY) Specifications for Low Rate

Wireless Personal Area Networks (LR-WPANs), 2006.

[9] Jennic Ltd., JN5139Wireless Microcontroller, http://www.jennic.com/

14
IEICE TRANS. COMMUN., VOL.E95–B, NO.9 SEPTEMBER 2012

products/wireless microcontrollers/jn5139.

[10] D. Johnson, T. Stack, R. Fish, D. M. Flickinger, L. Stoller, R. Ricci,

and J. Lepreau, Mobile Emulab: A robotic wireless and sensor net-

work testbed, IEEE INFOCOM 2006, Barcelona, Spain, April 23-29

2006.

[11] P. Levis, N. Lee, M. Welsh, and D. Culler, TOSSIM: Accurate and

Scalable Simulation of Entire TinyOS Applications, ACM Conf. on

Embedded Networked Sensor Systems (SenSys’03), Los Angeles,

California, USA, November 5-7, 2003, pp. 126-137.

[12] R. W. Lewis, P. Nithiarasu, and K. N. Seetharamu, Fundamentals of

the finite element method for heat and fluid flow, Wiley, 2004.

[13] T. Miyachi, K. Chinen, and Y. Shinoda, StarBED and SpringOS:

Large-scale General Purpose Network Testbed and Supporting Soft-

ware, Intl. Conf. on Perf. Evaluation Methodologies and Tools (Val-

uetools 2006), ACM Press, Pisa, Italy, October 2006.

[14] J. Nakata, T. Miyachi, R. Beuran, K. Chinen, S. Uda, K. Masui, Y.

Tan, and Y. Shinoda, StarBED2: Large-scale, Realistic and Real-

time Testbed for Ubiquitous Networks, TridentCom 2007, Orlando,

Florida, USA, May 21-23, 2007.

[15] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, Cross-

level sensor network simulation with COOJA, IEEE Intl. Work-

shop on Practical Issues in Building Sensor Network Applications

(SenseApp 2006), Tampa, Florida, USA, November 2006.

[16] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J. S. Baras, ATEMU:

A Fine-grained Sensor Network Simulator, IEEE Conf. on Sensor

and Ad Hoc Communications and Networks (SECON 2004), Santa

Clara, California, USA, October 4-7, 2004, pp. 145-152.

[17] T. S. Rappaport, Wireless Communications: Principles and Practice,

Prentice Hall PTR, 2nd edition, 2002.

[18] Y. Tan, Home Network Technology 2011 for Smart House (in

Japanese), Impress R&D, 2011.

[19] Texas Instruments Inc., CC2531: System-on-Chip Solution for

IEEE 802.15.4 and ZigBee Applications, http://focus.ti.com/docs/prod/

folders/print/cc2531.html.

[20] University of Utah, School of Computing, Emulab - Total network

testbed, http://www.emulab.net.

[21] G. Werner-Allen, P. Swieskowski, and M. Welsh, MoteLab: a wire-

less sensor network testbed, Intl. Symp. on Information Processing

in Sensor Networks (IPSN 2005), Los Angeles, California, USA,

April 25-27, 2005, pp. 483- 488.

[22] J. Zhou, Z. Ji, and R. Bagrodia, Twine: A hybrid emulation testbed

for wireless networks and applications, IEEE INFOCOM 2006,

Barcelona, Spain, April 23-29 2006.

Razvan Beuran received the B.Sc., M.Sc.

and Ph.D. degrees from “Politehnica” Univer-

sity, Bucharest, Romania in 1999, 2000 and

2004, respectively (the PhD degree was de-

livered jointly with “Jean Monnet” University,

Saint Etienne, France). From 2001 to 2005 he

was with CERN, Geneva, Switzerland as a re-

searcher. Since 2006 he is researcher with the

National Institute of Information and Commu-

nications Technology, Hokuriku StarBED Tech-

nology Center, Ishikawa, Japan. Since 2007 he

is also project researcher with the Japan Advanced Institute of Science and

Technology, Ishikawa, Japan. His research topics include network depend-

ability studies in wired and wireless networks, in particular through the use

of network emulation. He is a member of IEEE.

Junya Nakata received his Ph.D. in Infor-

mation Science from Japan Advanced Institute

of Science and Technology in 2009. Since 2012

he is assistant division director for the engineer-

ing headquarters of Uniden Corporation. Be-

fore joining Uniden Corporation, he worked for

several organizations, such as Keio University

as project associate professor, National Institute

of Information and Communications Technol-

ogy as researcher, and Nokia Corporation as re-

search engineer.

Yasuo Tan was born in 1965. He received

his Ph.D. from Tokyo Institute of Technology

in 1993. He joined Japan Advanced Institute of

Science and Technology (JAIST) as an assistant

professor of the School of Information Science

in 1993. He has been a professor since 1997. He

is interested in Ubiquitous Computing Systems

especially Home Networking Systems. He is a

leader of Residential ICT SWG of NeW Gener-

ation Network Forum, a chairman of Green Grid

Platform at Home Alliance, an advisory fellow

of ECHONET Consortium, and a member of IEEE, ACM, IPSJ, IEICE,

IEEJ, JSSST, and JNNS.

Yoichi Shinoda received his B.E., M.E. and Ph.D. from Tokyo Institute

of Technology in 1983, 1985 and 1989, respectively. He joined Japan Ad-

vanced Institute of Science and Technology in 1991 as a professor of the

School of Information Science. His research interests include distributed

and parallel computing, networking systems, operating systems, and infor-

mation environments.

