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Abstract 
We have designed and implemented a system that 

permits the measurement of network Quality of Service 
(QoS) parameters. This system allows us to objectively 
evaluate the requirements of network applications for 
delivering user acceptable quality. We use FastEthernet taps 
to monitor full-duplex traffic and programmable network 
interface cards to extract all the information needed to 
compute the network QoS parameters: latency, jitter, packet 
loss and throughput. The measurement system makes use of 
a global clock to synchronize the time measurements in 
different points of the network. 

We have employed this system to evaluate the 
performance of several network devices and study the 
behaviour of real network applications, such as file transfer 
and voice over IP. For these applications user perceived 
quality (UPQ) metrics have been defined in order to assess 
their QoS requirements. Since we measure simultaneously 
network QoS and application UPQ, we are able to correlate 
them. Determining application requirements has two main 
uses: (i) to predict UPQ for an application running over a 
given network based on the corresponding measured QoS 
parameters and understand the causes of application failure; 
(ii) to design/configure networks that provide the necessary 
conditions so that an application will run with a desired 
UPQ level. 

 
1  INTRODUCTION  

Quality of Service (QoS) has become more widely 
recognised as an important issue since network applications 
with real-time requirements have started to spread on a 
larger scale. At the moment there are not many systems able 
to correlate the QoS provisioned by networks with the user 
perceived quality (UPQ) for specific applications, such as 
file transfer or voice over IP (VoIP).  

Knowing the requirements of such applications allows 
predicting whether a certain connection is valid for a certain 
application and what will be the perceived quality for that 
application. 

There are various projects involved in the field of QoS. 
The Quantum project studied the mechanisms that can be 
employed for different networks in order to ensure service 
differentiation [7]. SEQUIN reviewed QoS issues [3] and 
described a QoS testbed topology [4]. TEQUILA’s objective 
is to study, implement and validate network service 
definition and traffic engineering tools built upon DiffServ 
in order to obtain quantitative end-to-end QoS guarantees 
[8], [9], [22]. QBone specifies and deploys the QBone 
Premium Service, a virtual leased-line IP service built also 
on DiffServ forwarding primitives [29]. Internet2 has also 
started the End-to-End Performance Initiative [10], whose 
objective is to create a predictable and well-supported 
network environment. All these projects focus on network 
QoS mechanisms, whereas we undertook first establishing 
application requirements such that user expectations are 
fulfilled. Only subsequently can QoS mechanisms be 
deployed to meet these requirements. 

The relationship between network conditions and 
application performance has been studied by a number of 
projects. Internet2 QoS Working Group has published a 
survey on QoS application needs [23]. TF-STREAM 
reported on best-practice guidelines for deploying real-time 
multimedia applications [5]. HEAnet reviewed several 
aspects of perceived quantitative quality of applications 
[25]. Generally, these approaches are qualitative – we aim to 
create a quantitative representation of UPQ that can be 
related to QoS parameters. 

Several alternatives exist for measuring network QoS 
parameters, from simple applications, such as ping and 
traceroute, to more complex ones, like Iperf [30]. 
NetIQ Chariot, a commercial product, emulates transaction 
traffic from real applications and measures response time, 
throughput etc. The Surveyor project [28] uses Global 
Positioning System (GPS) to perform packet loss and one-
way delay measurements  (with a precision of 20 µs [19]) 
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based on IETF IP Performance Metrics methodology. RIPE 
NCC Test Traffic Measurements Service is a system that 
monitors the connectivity of a site to other parts of the 
Internet [26]. We built our own system that is able to 
measure non-intrusively the network QoS parameters. This 
system is composed of commodity articles – FastEthernet 
taps, programmable network interface cards (NICs) – 
together with custom designed clock cards for time 
synchronization. Using these components, we have obtained 
a latency measurement accuracy of 1 µs, for any size 
packets, up to loads of 100 Mbps (see Section 3). 

Note that some applications can be redesigned to 
perform better in current best-effort networks. For example, 
TCP has been designed when networks were relatively slow 
[18]. Nowadays networks have a much higher bandwidth, 
therefore new mechanisms could be used to improve 
performance [2]. However, our work concentrates only on 
standard out-of-the-box applications. 

In parallel with monitoring network traffic for 
computing QoS parameters, we quantify the perceived 
quality for two applications, based on specifically defined 
metrics. Thus we are able to correlate network conditions 
with the UPQ for these applications; this allows the 
performance of two main tasks: 

• predicting the expected UPQ for an application running 
over a given network taking into account the 
corresponding measured QoS parameters; understand-
ing the causes of application failure by defining 
minimum requirements that must be met by the 
network; 

• designing/configuring a network to provide the 
necessary conditions for an application to run at a 
desired UPQ level. 
One of the major advantages of our system is its 

versatility. It can be used to test network devices, small local 
networks and even large local or wide-area networks (in this 
case GPS cards can be used for global time reference). We 
are able to measure one-way latency, which is more relevant 
than Round Trip Time (RTT) measurement given the usual 
asymmetry of networks. All our measurements are non-
intrusive. After placing the taps in a network, traffic flows 
unaffected and we can observe the behaviour of real network 
applications. In addition, our system can be reprogrammed 
as required for future work.  

Most network performance evaluation is currently done 
either through experimental work in real networks, 
simulation or an analytical approach. Emulation is a hybrid 
performance evaluation methodology enabling controlled 
experimentation with real applications. This is an integral 
component to our approach of studying QoS. 

 
2  SYSTEM ARCHITECTURE 

Figure 1 shows the system we have designed in a 
regular test setup. We use two FastEthernet taps to mirror 
the traffic on the link between two Linux PCs that run 
network applications. Traffic is fed into four programmable 

Alteon UTP NICs, two for each tap, in order to mirror full-
duplex traffic. From each packet all the information required 
in order to compute the network QoS parameters is extracted 
and stored in the local memory as packet descriptors. The 
host PCs, which control the programmable NICs, 
periodically collect this information and store it in descriptor 
files. This data is then used to compute off-line the 
following network QoS parameters: latency and jitter, 
packet loss and throughput. We can calculate instantaneous 
or average values, and various histograms. 

 
Figure 1. Measurement system setup. 

 
An additional application-dependent process, that 

assesses the UPQ for that particular application, takes place 
during the test. For example, when studying VoIP we record 
the output of the VoIP system as a wave file. Then we use a 
specific metric, Perceptual Evaluation of Speech Quality 
(PESQ) score [16], to evaluate the speech quality for that 
VoIP communication. 

The most important step is then correlating the network 
QoS parameters that have been computed for the connection 
with the UPQ calculated for the studied application. This 
correlation allows testing network connections before 
deploying network applications, and predicting the expected 
UPQ for those applications. 

In our test setup we use a network emulator. The 
emulator can degrade network QoS by introducing in a 
controlled way artificial delay, jitter, packet loss and 
throughput limitations. We have used such a solution in 
order to be able to analyze a wide range of controllable 
network conditions, while using real applications. This 
would not have been possible using real networks or 
simulators. 

 

2.1  Off-the-shelf system components 
Taps are passive network devices that can be used to 

monitor a full-duplex link, in our case a FastEthernet 
connection. The setup described includes two FastEthernet 
taps manufactured by NetOptics that mirror the traffic 
flowing in both directions and feed it to the programmable 
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NICs (see Section 2.3). Taps are the best solution to monitor 
full-duplex links. Using the port mirroring option on 
switches has the disadvantage of introducing delays that 
depend on the load. Hubs are another possibility, but they do 
not allow full duplex monitoring due to the collisions that 
may appear between traffic in the two directions. 

The NIST Net network emulator [24] is a freeware tool 
that dynamically emulates network conditions. This 
emulator is implemented as a kernel module that makes use 
of a real-time clock module in order to attain higher 
accuracy. The emulator allows controlled, reproducible 
experiments with applications that are network performance 
sensitive or adaptive. By operating at IP level, NIST Net can 
emulate the end-to-end performance characteristics imposed 
by various network situations. 

Other components we have used are programmable 
Alteon Fast/Gigabit Ethernet NICs. The host PC 
communicates with the NIC through a shared memory 
segment and control structures. The NIC performs all the 
necessary Ethernet MAC and PHY layer processing. We 
programmed these NICs to monitor 100 Mbps links, 
operating at full speed. The NIC has a 1 MB memory, which 
is used to store the running software and packet descriptors 
extracted from the mirrored traffic. 

 

2.2  Network QoS metrics 
Based on the data collected by the QoS measurement 

system (see Section 2.3), we compute off-line the following 
QoS parameters: average latency and jitter, average 
throughput and packet loss [13], [6]. The average jitter is 
computed using a reference latency value (e.g. the latency of 
the first packet [13], the average latency, the latency of the 
previous packet [6]). The average jitter an application would 
experience is given by the jitter determined with respect to 
the latency of the previous packet. Hence we consider it the 
most relevant from an application-oriented perspective. 

Packet loss is determined using the packet identifier 
from descriptors. A packet is considered lost if its identifier, 
which appears in the descriptor file at the first measurement 
point, doesn’t appear in the descriptor file at the second 
measurement point. 

We can also compute instantaneous values (e.g. for 
throughput) and various histograms (e.g. inter-packet arrival 
time histograms). 

 

2.3  QoS measurement system 
The QoS measurement system uses the information 

collected by NICs to compute off-line the QoS parameters 
for the network connection. One NIC is needed for each 
traffic direction, hence a total of four NICs is required in 
order to monitor two full-duplex links in a network. These 
NICs produce for each packet a descriptor with the 
following fields: timestamp (32 bits), packet identifier (32 
bits), packet size (16 bits), protocol number (8 bits).  

Timestamp represents the packet arrival time, including 
the time needed to store the packet in the receiving buffer. 

Packet identifier is a value that uniquely identifies the 
packet. We obtain it based on information from packets, 
such as sequence numbers from RTP and TCP headers, 
checksums, etc. Packet size contains the dimension of the 
packet expressed in bytes, including the four-byte CRC. 
Protocol number allows us to distinguish between different 
protocols and filter the packets of interest.  

Synchronization between NICs is achieved by using a 
custom global clock system, formed of a master clock card 
and slave clock cards. The master clock card sends a 
rectangular clock signal to all slave cards. For higher 
robustness, the current master clock value is periodically 
sent to update the clock values of the slave cards. The global 
clock has a frequency of 66.67 MHz, derived from the 33.33 
MHz PCI clock, and is used for storing system-wide valid 
time information. However, the NICs use processor clocks 
with a frequency of 88 MHz for all internal operations. 
Packet timestamps are obtained by transforming the local 
clock value to a global one, using conversion tables 
generated 128 times per second. The overall error of our 
latency measurements is determined by several factors: (i) 
the global clock is sourced from the PCI clock; (ii) the local 
88 MHz NIC clock is obtained from a 22 MHz quartz 
oscillator; (iii) integer arithmetic is employed for local to 
global clock conversion; (iv) the NICs use DMA transfers to 
read the global clock from clock cards; (v) the time 
difference between the arrival of a packet and its processing 
is variable. The overall latency measurement error is 
bounded to 900 ns (see Section 3). 

Since the clock and update signals are sent from master 
to slaves via short coaxial cables, this synchronization 
mechanism cannot be applied for remote locations. For 
long-haul tests, synchronization can be achieved using GPS, 
as described in [20]. 

 

2.4  UPQ metrics 
A very important aspect of our work is the definition 

and quantification of application specific metrics. This 
allows the assessment of the UPQ for particular 
applications. For file transfer protocols, such as FTP or 
HTTP, we propose the usage of two UPQ metrics: goodput 
and transfer time performance. 

Goodput (G) quantifies the network efficiency of the 
file transfer. It is computed as follows:   

                                 
][

][min

bytesB

bytesB
G = ,       (1) 

where Bmin is the minimum number of bytes required for that 
file transfer (including protocol overhead for Ethernet, IP, 
TCP and FTP) and B is the count of the actually transmitted 
bytes. 

 Goodput values are on a scale from 0 to 1, where 1 
means maximum efficiency of the file transfer. Goodput 
decreases due to packet retransmission when packet loss 
occurs. G doesn’ t depend on any time parameter related to 
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the transfer (e.g. transfer duration, RTT) but only on the 
amount of bytes being effectively transmitted. 

Transfer time performance (TTP) allows the evaluation 
of the time efficiency for a file transfer:  

                   
][][

][

][

][ min

sTbpsL

bytesB

sT

sT
TTP th

⋅
== ,         (2) 

where Tth is the theoretical transfer duration and T is the 
measured transfer duration. The theoretical transfer duration 
is the ratio of the minimum number of transmitted bytes 
required for that transfer, Bmin, to the line speed, L (in our 
case 100 Mbps). T is computed as the difference between 
the time when the last packet from a transfer was received 
and the time when the first packet was sent. 

TTP is also on a scale from 0 to 1, with 1 meaning the 
ideal, optimum performance. Packet retransmission delays 
make TTP values decrease. TTP depends indirectly on all 
parameters that influence transfer duration, such as RTT, 
TCP window size etc. 

 
 For speech quality assessment several methods exist: 

MOS & PAMS [14], PSQM [15], the E-model [11] and 
PESQ [16]. We have decided to use PESQ score, the latest 
metric recommended by the International Telecommuni-
cation Union (ITU). PESQ integrates the best features of 
PAMS and PSQM, using a perceptual model to objectively 
evaluate the UPQ for voice communication applications. 

VoIP applications can also be studied from the point of 
view of network utilization efficiency, but this is generally 
determined by the choice of the codec and doesn’ t depend 
on network conditions. Another aspect which is however 
important regarding codec selection is that each of them has 
a maximum PESQ score that can be attained in optimum 
network conditions. The codec we used in our experiments 
is G.711 [12] that has a maximum PESQ score of 4.3. 

The range of PESQ scores is from -0.5 to 4.5 [16]. A 
PESQ score higher than 3 means speech quality is 
acceptable (scores exceeding 3.8 mean toll quality, 
equivalent to that provided by Public Switched Telephone 
Networks). If scores are between 2 and 3, effort is required 
for understanding the speech. PESQ scores lower than 2 
reflect unacceptable perceived speech quality [27]. 

 

2.4  UPQ measurement system 
For file transfer experiments no extra steps are required. 

The corresponding UPQ parameters can be computed based 
on the same data used for network QoS parameters. 

In order to measure VoIP UPQ the PC that receives 
VoIP data records the output waveform as a wave file (8 
kHz sampling rate, 16 bits per sample). Resulting files are 
compared to the wave file used as the input of the VoIP 
system to calculate the corresponding PESQ score. This is 
done using the ITU PESQ algorithm [16] in an 
implementation supplied by Malden Electronics [21]. 

 
 

3  SYSTEM EVALUATION 
Before starting our experiments we evaluated our QoS 

measurement system in the simplified setup from Figure 2. 
Since the taps are connected to each other, the time spent by 
a packet between the two taps is constant. We measured the 
difference between the arrival times at the two Host PCs. 
Our results show the variation displayed in Figure 3. 
 

 
 

Figure 2. Setup used for evaluation. 
 

The time difference histogram should consist of a single 
bin at a value equal to the propagation time between the two 
taps. The 900 ns spread of the histogram (400 ns full width 
half maximum) is small enough to allow measurement of 
latencies of the order of tens of microseconds. Therefore, 
this precision is satisfactory for our experiments. 

 
Figure 3. Histogram of arrival time differences. 

 
We evaluated also the VoIP UPQ assessment method. 

The average PESQ score we obtained in zero loss, zero jitter 
conditions was 4.28, close to 4.3 as expected for the selected 
codec, G.711. 

A final test determined that the network emulator could 
handle rates up to line speed (100 Mbps) with good 
precision for the artificial network degradation it introduced 
(packet loss and jitter). 

 

4  EXPERIMENTAL RESULTS 
 We have selected two network applications that are 

extensively used in LANs, as well as over the Internet. They 
have different network behaviour: 

ISBN: 1-56555-269-5 383 SPECTS '03



• file transfer is an elastic TCP-based  application.  TCP 
tries to occupy as much of the available bandwidth as it 
can handle.  It also adapts its transmission rate to 
prevailing network conditions – with high loss rates it 
backs off to a slower transmission rate; 

• VoIP is an inelastic UDP-based application.  UDP uses 
a fixed amount of bandwidth and has no inherent error 
recovery mechanisms so it cannot adjust to prevailing 
network conditions. 
In the experiments we performed, we introduced 

artificial packet loss and jitter using the NIST Net network 
emulator. For file transfer tests packet loss was introduced in 
both traffic directions. 

 

4.1  File transfer 
We ran our tests using the setup depicted in Figure 1, 

with different transferred file sizes. The conditions for our 
file transfer tests were the following: FTP client with Linux 
kernel 2.4.6 (16 kB TCP window), ftp-0.17-7, FTP server 
with Linux kernel 2.4.9 (16 kB TCP window), wu-ftpd-
2.6.1-20. In what follows, we present values obtained by 
averaging over 100 experiments for each intended loss rate. 
We ran two series of tests, one with a RTT of 0.8 ms 
(emulating a local network scenario) and the other with a 
RTT of 60 ms (emulating a wide area network). Packet loss 
rates ranged from 0% to 25%. 

Table 1 shows the TTP values obtained in zero loss 
conditions for two different RTTs and several transferred 
file sizes. It can be seen that the time efficiency increases 
with file sizes, since the overhead of the connection 
establishment and termination becomes less significant 
compared to the file transfer time itself. The variation of 
TTP between the two RTTs is of an order of magnitude. 

  
Table 1. Transfer time performance depending on file 

size and RTT. 
File size 10 kB 100 kB 1MB 10MB 

0.8 ms RTT 0.0219 0.1650 0.8221 0.8919 
TTP 

60 ms RTT 0.0029 0.0141 0.0559 0.0791 
 

The results presented below were obtained for a 10 kB 
file, which is the typical file size for Internet traffic [1]. For 
larger file sizes, the graphs of goodput and TTP have a 
similar shape. TTP values approach 1 for large files and 
small RTTs (see Table 1), which shows that it is more 
efficient to send the same amount of data in one large 
transfer than in multiple short ones. 

Goodput (see Figure 4) decreases almost linearly with 
packet loss, showing the diminution of link utilization 
efficiency. As expected RTT doesn't have any influence on 
goodput, since G is not time dependent. Therefore goodput 
is not a stand-alone indicator of file transfer UPQ and must 
be correlated with TTP.  

Transfer time performance (see Figure 5) shows the 
significant dependency of transfer time on packet loss. The 
maximum value of TTP equals 0.0219 due to the additional 

durations of connection establishment and termination, 
which represent approximately 96% of the transfer time for 
10 kB files. 

 
Figure 4. Goodput versus packet loss for file transfer 

tests (10 kB file). 
 

Figure 5 shows that for 0.8 ms RTT, TTP value 
decreases 20 times for packet loss rates of 5% compared to 
the value obtained at zero loss. This is equivalent with an 
increase of 20 times of the transfer duration, which means a 
significant degradation of the UPQ. For loss rates of 10% 
and higher, performance degrades hundreds of times. For 60 
ms RTT TTP is smaller than for 0.8 ms RTT and loss has a 
less dramatic influence on it. 

 
Figure 5. Transfer time performance versus packet loss 

for file transfer tests (10 kB file). 
 

The influence of packet loss on TCP performance 
depends on the type of the lost packets: losing a data packet 
is easily hidden by the retransmission mechanism, whereas 
losing a TCP connection establishment or termination 
packet has a more important effect due to the relatively large 
timeouts. For 10 kB files, transfer duration has increased by 
an order of magnitude in such cases. 
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4.2  VoIP 
VoIP is one of the most widely used interactive network 

applications. The bandwidth requirements of speech trans-
mission are low (64 kbps voice data maximum), but 
interactivity implies high sensitivity to delay and jitter. We 
haven’t studied the influence of one-way delay on VoIP 
UPQ because these requirements are generally known [17], 
[25]: a mouth-to-ear delay of up to 150 ms gives good inter-
activity, a delay between 150 and 400 ms is acceptable, and 
delays higher than 400 ms are unacceptable. Therefore we 
performed only uni-directional tests, which focus on the 
perceived quality of the speech itself depending on packet 
loss and jitter. 

For our tests we used a freeware VoIP application. The 
results presented below are obtained with the G.711 
encoding [12] (64 kbps, µ-law encoding). The application 
doesn’ t do silence suppression, reorder out-of-order packets 
or perform packet loss concealment. When using RTP the 
length of audio data per packet is of 40 ms. We used a 
dejittering buffer of 80 ms, that is equivalent to two VoIP 
packets. We present here a study of the region with loss 
rates between 0 and 10% and average jitter values ranging 
from 0 to 75 ms, since quality becomes unacceptable at 
these boundaries already. Five series of tests were run to 
collect the data used for the results shown below. Figure 6 
presents a 3D plot of the PESQ score versus loss rate and 
average jitter. Figures 7 and 8 show cross-sections of the 3D 
surface along loss and jitter axes. 

 
Figure 6. PESQ score versus packet loss rate and jitter 

for VoIP tests. 
 

Excellent speech quality (PESQ scores ≥ 3.8) is 
obtained for loss rates below 2% and jitter smaller than 10 
ms. Good speech quality (PESQ scores higher than 3) is 
obtained if jitter is less than 20 ms, even for loss rates 
approaching 10%.  

Acceptable quality is obtained for jitter below 50 ms; 
for larger values the perceived quality becomes unaccept-
able. It is interesting to notice that for values of the jitter 
exceeding 25 ms the influence of packet loss on UPQ is 

quite small. The variation of the PESQ score is only of 
about 15% for loss rates ranging from 0% to 10% when 
jitter equals 25 ms and less than 10% for jitter values larger 
than 50 ms.   

In some cases, for example when jitter equals 50 ms 
there is an increase of UPQ with loss rate (see Figure 7). We 
believe that this can be explained by the decrease of the 
perceptual effect of jitter once packet loss becomes high. 

 
Figure 7. PESQ score versus average loss rate for 

VoIP tests. 
 
The main reason for the steep decrease of quality with 

jitter (see Figure 8) is due to the small size of the dejittering 
buffer (80 ms). We have selected this size in order to have a 
highly interactive scenario, with an overall delay lower than 
150 ms. A trade-off can be made by decreasing the required 
level of interactivity, thus allowing for larger dejittering 
buffers.  

 
Figure 8. PESQ score versus average jitter for 

VoIP tests. 
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5  CONCLUSIONS 
The novelty of our work is that we are able to both 

accurately measure network QoS parameters and objectively 
assess application UPQ in parallel. This allowed us to 
quantify the relationship between QoS parameters and UPQ 
for two applications (file transfer and VoIP) and identify 
their QoS requirements. 

For file transfer, we observed the expected decrease of 
goodput with packet loss. The dependency is linear and 
goodput decrease is not very large in the range of 0% to 5% 
packet loss. For loss rates above 20%, goodput indicates a 
transfer efficiency lower than 0.7. The transfer time perfor-
mance graph has a negative exponential shape, showing that 
the time needed to transfer a file increases significantly with 
packet loss. For loss rates around 5% and low RTTs, the 
TTP is one order of magnitude smaller than the value 
obtained at zero packet loss. At 25% loss rate, the time to 
transfer has become several hundred times larger than in the 
case the loss rate is smaller than 5%. 

VoIP results show that for packet loss less than 10% 
and jitter below 20 ms the perceived speech quality is good 
(PESQ scores are larger than 3). For jitter exceeding 50 ms 
the quality of the speech signal becomes unacceptable, the 
distortion of the speech signal being very large. 

Using our results it is possible to predict an application 
UPQ based on the corresponding measured network QoS 
parameters and understand the reasons of possible 
application failure. One can also determine the end-to-end 
network QoS requirements for an application to run with a 
desired UPQ level. Mapping high-level user requirements to 
network QoS conditions is also a key issue in Service Level 
Agreement contracts. 

 

6  FUTURE WORK 
In the near future we shall perform more tests with 

VoIP using different codecs. We also plan to quantify the 
influence on UPQ of dejittering buffer sizes, reordering   
out-of-order packets and possibly packet loss concealment. 

The next step will be to study the interaction between 
several traffic flows sharing the same link and having the 
same, or different, network behaviour – elastic or inelastic. 
These realistic conditions will help us generalize the 
conclusions we have drawn so far for separate applications. 

We also plan to extend our area of interest to other 
network applications, such as web browsing, video 
streaming and teleconferencing, for which UPQ is of 
considerable importance. 
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