
Network Quality of Service Measurement System
for Application Requirements Evaluation

Razvan Beuran, Mihail Ivanovici, Bob Dobinson,
CERN, 1211 Geneva 23, Switzerland, {Razvan.Beuran, Mihail.Ivanovici, Bob.Dobinson}@cern.ch

Neil Davies, Predictable Network Solutions, 36 McAfee Farm Rd, Bedford, NH 03110 USA, Neil.Davies@pnsol.com
Peter Thompson, U4EA Technologies Limited, City Point, Temple Gate, Bristol,

BS1 6PL, UK, Peter.Thompson@u4eatech.com

Keywords: QoS parameters, QoS measurement, traffic
monitoring, clock synchronization, performance evaluation
of network applications.

Abstract
We have designed and implemented a system that

permits the measurement of network Quality of Service
(QoS) parameters. This system allows us to objectively
evaluate the requirements of network applications for
delivering user acceptable quality. We use FastEthernet taps
to monitor full-duplex traffic and programmable network
interface cards to extract all the information needed to
compute the network QoS parameters: latency, jitter, packet
loss and throughput. The measurement system makes use of
a global clock to synchronize the time measurements in
different points of the network.

We have employed this system to evaluate the
performance of several network devices and study the
behaviour of real network applications, such as file transfer
and voice over IP. For these applications user perceived
quality (UPQ) metrics have been defined in order to assess
their QoS requirements. Since we measure simultaneously
network QoS and application UPQ, we are able to correlate
them. Determining application requirements has two main
uses: (i) to predict UPQ for an application running over a
given network based on the corresponding measured QoS
parameters and understand the causes of application failure;
(ii) to design/configure networks that provide the necessary
conditions so that an application will run with a desired
UPQ level.

1 INTRODUCTION

Quality of Service (QoS) has become more widely
recognised as an important issue since network applications
with real-time requirements have started to spread on a
larger scale. At the moment there are not many systems able
to correlate the QoS provisioned by networks with the user
perceived quality (UPQ) for specific applications, such as
file transfer or voice over IP (VoIP).

Knowing the requirements of such applications allows
predicting whether a certain connection is valid for a certain
application and what will be the perceived quality for that
application.

There are various projects involved in the field of QoS.
The Quantum project studied the mechanisms that can be
employed for different networks in order to ensure service
differentiation [7]. SEQUIN reviewed QoS issues [3] and
described a QoS testbed topology [4]. TEQUILA’s objective
is to study, implement and validate network service
definition and traffic engineering tools built upon DiffServ
in order to obtain quantitative end-to-end QoS guarantees
[8], [9], [22]. QBone specifies and deploys the QBone
Premium Service, a virtual leased-line IP service built also
on DiffServ forwarding primitives [29]. Internet2 has also
started the End-to-End Performance Initiative [10], whose
objective is to create a predictable and well-supported
network environment. All these projects focus on network
QoS mechanisms, whereas we undertook first establishing
application requirements such that user expectations are
fulfilled. Only subsequently can QoS mechanisms be
deployed to meet these requirements.

The relationship between network conditions and
application performance has been studied by a number of
projects. Internet2 QoS Working Group has published a
survey on QoS application needs [23]. TF-STREAM
reported on best-practice guidelines for deploying real-time
multimedia applications [5]. HEAnet reviewed several
aspects of perceived quantitative quality of applications
[25]. Generally, these approaches are qualitative – we aim to
create a quantitative representation of UPQ that can be
related to QoS parameters.

Several alternatives exist for measuring network QoS
parameters, from simple applications, such as ping and
traceroute, to more complex ones, like Iperf [30].
NetIQ Chariot, a commercial product, emulates transaction
traffic from real applications and measures response time,
throughput etc. The Surveyor project [28] uses Global
Positioning System (GPS) to perform packet loss and one-
way delay measurements (with a precision of 20 µs [19])

ISBN: 1-56555-269-5 380 SPECTS '03

mailto:Razvan.Beuran@cern.ch, Mihail.Ivanovici@cern.ch, Bob.Dobinson@cern.ch
mailto:Peter.Thompson@u4eatech.com
mailto:Neil.Davies@pnsol.com

based on IETF IP Performance Metrics methodology. RIPE
NCC Test Traffic Measurements Service is a system that
monitors the connectivity of a site to other parts of the
Internet [26]. We built our own system that is able to
measure non-intrusively the network QoS parameters. This
system is composed of commodity articles – FastEthernet
taps, programmable network interface cards (NICs) –
together with custom designed clock cards for time
synchronization. Using these components, we have obtained
a latency measurement accuracy of 1 µs, for any size
packets, up to loads of 100 Mbps (see Section 3).

Note that some applications can be redesigned to
perform better in current best-effort networks. For example,
TCP has been designed when networks were relatively slow
[18]. Nowadays networks have a much higher bandwidth,
therefore new mechanisms could be used to improve
performance [2]. However, our work concentrates only on
standard out-of-the-box applications.

In parallel with monitoring network traffic for
computing QoS parameters, we quantify the perceived
quality for two applications, based on specifically defined
metrics. Thus we are able to correlate network conditions
with the UPQ for these applications; this allows the
performance of two main tasks:

• predicting the expected UPQ for an application running
over a given network taking into account the
corresponding measured QoS parameters; understand-
ing the causes of application failure by defining
minimum requirements that must be met by the
network;

• designing/configuring a network to provide the
necessary conditions for an application to run at a
desired UPQ level.
One of the major advantages of our system is its

versatility. It can be used to test network devices, small local
networks and even large local or wide-area networks (in this
case GPS cards can be used for global time reference). We
are able to measure one-way latency, which is more relevant
than Round Trip Time (RTT) measurement given the usual
asymmetry of networks. All our measurements are non-
intrusive. After placing the taps in a network, traffic flows
unaffected and we can observe the behaviour of real network
applications. In addition, our system can be reprogrammed
as required for future work.

Most network performance evaluation is currently done
either through experimental work in real networks,
simulation or an analytical approach. Emulation is a hybrid
performance evaluation methodology enabling controlled
experimentation with real applications. This is an integral
component to our approach of studying QoS.

2 SYSTEM ARCHITECTURE

Figure 1 shows the system we have designed in a
regular test setup. We use two FastEthernet taps to mirror
the traffic on the link between two Linux PCs that run
network applications. Traffic is fed into four programmable

Alteon UTP NICs, two for each tap, in order to mirror full-
duplex traffic. From each packet all the information required
in order to compute the network QoS parameters is extracted
and stored in the local memory as packet descriptors. The
host PCs, which control the programmable NICs,
periodically collect this information and store it in descriptor
files. This data is then used to compute off-line the
following network QoS parameters: latency and jitter,
packet loss and throughput. We can calculate instantaneous
or average values, and various histograms.

Figure 1. Measurement system setup.

An additional application-dependent process, that

assesses the UPQ for that particular application, takes place
during the test. For example, when studying VoIP we record
the output of the VoIP system as a wave file. Then we use a
specific metric, Perceptual Evaluation of Speech Quality
(PESQ) score [16], to evaluate the speech quality for that
VoIP communication.

The most important step is then correlating the network
QoS parameters that have been computed for the connection
with the UPQ calculated for the studied application. This
correlation allows testing network connections before
deploying network applications, and predicting the expected
UPQ for those applications.

In our test setup we use a network emulator. The
emulator can degrade network QoS by introducing in a
controlled way artificial delay, jitter, packet loss and
throughput limitations. We have used such a solution in
order to be able to analyze a wide range of controllable
network conditions, while using real applications. This
would not have been possible using real networks or
simulators.

2.1 Off-the-shelf system components
Taps are passive network devices that can be used to

monitor a full-duplex link, in our case a FastEthernet
connection. The setup described includes two FastEthernet
taps manufactured by NetOptics that mirror the traffic
flowing in both directions and feed it to the programmable

ISBN: 1-56555-269-5 381 SPECTS '03

NICs (see Section 2.3). Taps are the best solution to monitor
full-duplex links. Using the port mirroring option on
switches has the disadvantage of introducing delays that
depend on the load. Hubs are another possibility, but they do
not allow full duplex monitoring due to the collisions that
may appear between traffic in the two directions.

The NIST Net network emulator [24] is a freeware tool
that dynamically emulates network conditions. This
emulator is implemented as a kernel module that makes use
of a real-time clock module in order to attain higher
accuracy. The emulator allows controlled, reproducible
experiments with applications that are network performance
sensitive or adaptive. By operating at IP level, NIST Net can
emulate the end-to-end performance characteristics imposed
by various network situations.

Other components we have used are programmable
Alteon Fast/Gigabit Ethernet NICs. The host PC
communicates with the NIC through a shared memory
segment and control structures. The NIC performs all the
necessary Ethernet MAC and PHY layer processing. We
programmed these NICs to monitor 100 Mbps links,
operating at full speed. The NIC has a 1 MB memory, which
is used to store the running software and packet descriptors
extracted from the mirrored traffic.

2.2 Network QoS metrics
Based on the data collected by the QoS measurement

system (see Section 2.3), we compute off-line the following
QoS parameters: average latency and jitter, average
throughput and packet loss [13], [6]. The average jitter is
computed using a reference latency value (e.g. the latency of
the first packet [13], the average latency, the latency of the
previous packet [6]). The average jitter an application would
experience is given by the jitter determined with respect to
the latency of the previous packet. Hence we consider it the
most relevant from an application-oriented perspective.

Packet loss is determined using the packet identifier
from descriptors. A packet is considered lost if its identifier,
which appears in the descriptor file at the first measurement
point, doesn’t appear in the descriptor file at the second
measurement point.

We can also compute instantaneous values (e.g. for
throughput) and various histograms (e.g. inter-packet arrival
time histograms).

2.3 QoS measurement system
The QoS measurement system uses the information

collected by NICs to compute off-line the QoS parameters
for the network connection. One NIC is needed for each
traffic direction, hence a total of four NICs is required in
order to monitor two full-duplex links in a network. These
NICs produce for each packet a descriptor with the
following fields: timestamp (32 bits), packet identifier (32
bits), packet size (16 bits), protocol number (8 bits).

Timestamp represents the packet arrival time, including
the time needed to store the packet in the receiving buffer.

Packet identifier is a value that uniquely identifies the
packet. We obtain it based on information from packets,
such as sequence numbers from RTP and TCP headers,
checksums, etc. Packet size contains the dimension of the
packet expressed in bytes, including the four-byte CRC.
Protocol number allows us to distinguish between different
protocols and filter the packets of interest.

Synchronization between NICs is achieved by using a
custom global clock system, formed of a master clock card
and slave clock cards. The master clock card sends a
rectangular clock signal to all slave cards. For higher
robustness, the current master clock value is periodically
sent to update the clock values of the slave cards. The global
clock has a frequency of 66.67 MHz, derived from the 33.33
MHz PCI clock, and is used for storing system-wide valid
time information. However, the NICs use processor clocks
with a frequency of 88 MHz for all internal operations.
Packet timestamps are obtained by transforming the local
clock value to a global one, using conversion tables
generated 128 times per second. The overall error of our
latency measurements is determined by several factors: (i)
the global clock is sourced from the PCI clock; (ii) the local
88 MHz NIC clock is obtained from a 22 MHz quartz
oscillator; (iii) integer arithmetic is employed for local to
global clock conversion; (iv) the NICs use DMA transfers to
read the global clock from clock cards; (v) the time
difference between the arrival of a packet and its processing
is variable. The overall latency measurement error is
bounded to 900 ns (see Section 3).

Since the clock and update signals are sent from master
to slaves via short coaxial cables, this synchronization
mechanism cannot be applied for remote locations. For
long-haul tests, synchronization can be achieved using GPS,
as described in [20].

2.4 UPQ metrics
A very important aspect of our work is the definition

and quantification of application specific metrics. This
allows the assessment of the UPQ for particular
applications. For file transfer protocols, such as FTP or
HTTP, we propose the usage of two UPQ metrics: goodput
and transfer time performance.

Goodput (G) quantifies the network efficiency of the
file transfer. It is computed as follows:

][

][min

bytesB

bytesB
G = , (1)

where Bmin is the minimum number of bytes required for that
file transfer (including protocol overhead for Ethernet, IP,
TCP and FTP) and B is the count of the actually transmitted
bytes.

 Goodput values are on a scale from 0 to 1, where 1
means maximum efficiency of the file transfer. Goodput
decreases due to packet retransmission when packet loss
occurs. G doesn’ t depend on any time parameter related to

ISBN: 1-56555-269-5 382 SPECTS '03

the transfer (e.g. transfer duration, RTT) but only on the
amount of bytes being effectively transmitted.

Transfer time performance (TTP) allows the evaluation
of the time efficiency for a file transfer:

][][

][

][

][min

sTbpsL

bytesB

sT

sT
TTP th

⋅
== , (2)

where Tth is the theoretical transfer duration and T is the
measured transfer duration. The theoretical transfer duration
is the ratio of the minimum number of transmitted bytes
required for that transfer, Bmin, to the line speed, L (in our
case 100 Mbps). T is computed as the difference between
the time when the last packet from a transfer was received
and the time when the first packet was sent.

TTP is also on a scale from 0 to 1, with 1 meaning the
ideal, optimum performance. Packet retransmission delays
make TTP values decrease. TTP depends indirectly on all
parameters that influence transfer duration, such as RTT,
TCP window size etc.

 For speech quality assessment several methods exist:

MOS & PAMS [14], PSQM [15], the E-model [11] and
PESQ [16]. We have decided to use PESQ score, the latest
metric recommended by the International Telecommuni-
cation Union (ITU). PESQ integrates the best features of
PAMS and PSQM, using a perceptual model to objectively
evaluate the UPQ for voice communication applications.

VoIP applications can also be studied from the point of
view of network utilization efficiency, but this is generally
determined by the choice of the codec and doesn’ t depend
on network conditions. Another aspect which is however
important regarding codec selection is that each of them has
a maximum PESQ score that can be attained in optimum
network conditions. The codec we used in our experiments
is G.711 [12] that has a maximum PESQ score of 4.3.

The range of PESQ scores is from -0.5 to 4.5 [16]. A
PESQ score higher than 3 means speech quality is
acceptable (scores exceeding 3.8 mean toll quality,
equivalent to that provided by Public Switched Telephone
Networks). If scores are between 2 and 3, effort is required
for understanding the speech. PESQ scores lower than 2
reflect unacceptable perceived speech quality [27].

2.4 UPQ measurement system
For file transfer experiments no extra steps are required.

The corresponding UPQ parameters can be computed based
on the same data used for network QoS parameters.

In order to measure VoIP UPQ the PC that receives
VoIP data records the output waveform as a wave file (8
kHz sampling rate, 16 bits per sample). Resulting files are
compared to the wave file used as the input of the VoIP
system to calculate the corresponding PESQ score. This is
done using the ITU PESQ algorithm [16] in an
implementation supplied by Malden Electronics [21].

3 SYSTEM EVALUATION
Before starting our experiments we evaluated our QoS

measurement system in the simplified setup from Figure 2.
Since the taps are connected to each other, the time spent by
a packet between the two taps is constant. We measured the
difference between the arrival times at the two Host PCs.
Our results show the variation displayed in Figure 3.

Figure 2. Setup used for evaluation.

The time difference histogram should consist of a single
bin at a value equal to the propagation time between the two
taps. The 900 ns spread of the histogram (400 ns full width
half maximum) is small enough to allow measurement of
latencies of the order of tens of microseconds. Therefore,
this precision is satisfactory for our experiments.

Figure 3. Histogram of arrival time differences.

We evaluated also the VoIP UPQ assessment method.

The average PESQ score we obtained in zero loss, zero jitter
conditions was 4.28, close to 4.3 as expected for the selected
codec, G.711.

A final test determined that the network emulator could
handle rates up to line speed (100 Mbps) with good
precision for the artificial network degradation it introduced
(packet loss and jitter).

4 EXPERIMENTAL RESULTS
 We have selected two network applications that are

extensively used in LANs, as well as over the Internet. They
have different network behaviour:

ISBN: 1-56555-269-5 383 SPECTS '03

• file transfer is an elastic TCP-based application. TCP
tries to occupy as much of the available bandwidth as it
can handle. It also adapts its transmission rate to
prevailing network conditions – with high loss rates it
backs off to a slower transmission rate;

• VoIP is an inelastic UDP-based application. UDP uses
a fixed amount of bandwidth and has no inherent error
recovery mechanisms so it cannot adjust to prevailing
network conditions.
In the experiments we performed, we introduced

artificial packet loss and jitter using the NIST Net network
emulator. For file transfer tests packet loss was introduced in
both traffic directions.

4.1 File transfer
We ran our tests using the setup depicted in Figure 1,

with different transferred file sizes. The conditions for our
file transfer tests were the following: FTP client with Linux
kernel 2.4.6 (16 kB TCP window), ftp-0.17-7, FTP server
with Linux kernel 2.4.9 (16 kB TCP window), wu-ftpd-
2.6.1-20. In what follows, we present values obtained by
averaging over 100 experiments for each intended loss rate.
We ran two series of tests, one with a RTT of 0.8 ms
(emulating a local network scenario) and the other with a
RTT of 60 ms (emulating a wide area network). Packet loss
rates ranged from 0% to 25%.

Table 1 shows the TTP values obtained in zero loss
conditions for two different RTTs and several transferred
file sizes. It can be seen that the time efficiency increases
with file sizes, since the overhead of the connection
establishment and termination becomes less significant
compared to the file transfer time itself. The variation of
TTP between the two RTTs is of an order of magnitude.

Table 1. Transfer time performance depending on file

size and RTT.
File size 10 kB 100 kB 1MB 10MB

0.8 ms RTT 0.0219 0.1650 0.8221 0.8919
TTP

60 ms RTT 0.0029 0.0141 0.0559 0.0791

The results presented below were obtained for a 10 kB
file, which is the typical file size for Internet traffic [1]. For
larger file sizes, the graphs of goodput and TTP have a
similar shape. TTP values approach 1 for large files and
small RTTs (see Table 1), which shows that it is more
efficient to send the same amount of data in one large
transfer than in multiple short ones.

Goodput (see Figure 4) decreases almost linearly with
packet loss, showing the diminution of link utilization
efficiency. As expected RTT doesn't have any influence on
goodput, since G is not time dependent. Therefore goodput
is not a stand-alone indicator of file transfer UPQ and must
be correlated with TTP.

Transfer time performance (see Figure 5) shows the
significant dependency of transfer time on packet loss. The
maximum value of TTP equals 0.0219 due to the additional

durations of connection establishment and termination,
which represent approximately 96% of the transfer time for
10 kB files.

Figure 4. Goodput versus packet loss for file transfer

tests (10 kB file).

Figure 5 shows that for 0.8 ms RTT, TTP value
decreases 20 times for packet loss rates of 5% compared to
the value obtained at zero loss. This is equivalent with an
increase of 20 times of the transfer duration, which means a
significant degradation of the UPQ. For loss rates of 10%
and higher, performance degrades hundreds of times. For 60
ms RTT TTP is smaller than for 0.8 ms RTT and loss has a
less dramatic influence on it.

Figure 5. Transfer time performance versus packet loss

for file transfer tests (10 kB file).

The influence of packet loss on TCP performance
depends on the type of the lost packets: losing a data packet
is easily hidden by the retransmission mechanism, whereas
losing a TCP connection establishment or termination
packet has a more important effect due to the relatively large
timeouts. For 10 kB files, transfer duration has increased by
an order of magnitude in such cases.

ISBN: 1-56555-269-5 384 SPECTS '03

4.2 VoIP
VoIP is one of the most widely used interactive network

applications. The bandwidth requirements of speech trans-
mission are low (64 kbps voice data maximum), but
interactivity implies high sensitivity to delay and jitter. We
haven’t studied the influence of one-way delay on VoIP
UPQ because these requirements are generally known [17],
[25]: a mouth-to-ear delay of up to 150 ms gives good inter-
activity, a delay between 150 and 400 ms is acceptable, and
delays higher than 400 ms are unacceptable. Therefore we
performed only uni-directional tests, which focus on the
perceived quality of the speech itself depending on packet
loss and jitter.

For our tests we used a freeware VoIP application. The
results presented below are obtained with the G.711
encoding [12] (64 kbps, µ-law encoding). The application
doesn’ t do silence suppression, reorder out-of-order packets
or perform packet loss concealment. When using RTP the
length of audio data per packet is of 40 ms. We used a
dejittering buffer of 80 ms, that is equivalent to two VoIP
packets. We present here a study of the region with loss
rates between 0 and 10% and average jitter values ranging
from 0 to 75 ms, since quality becomes unacceptable at
these boundaries already. Five series of tests were run to
collect the data used for the results shown below. Figure 6
presents a 3D plot of the PESQ score versus loss rate and
average jitter. Figures 7 and 8 show cross-sections of the 3D
surface along loss and jitter axes.

Figure 6. PESQ score versus packet loss rate and jitter

for VoIP tests.

Excellent speech quality (PESQ scores ≥ 3.8) is
obtained for loss rates below 2% and jitter smaller than 10
ms. Good speech quality (PESQ scores higher than 3) is
obtained if jitter is less than 20 ms, even for loss rates
approaching 10%.

Acceptable quality is obtained for jitter below 50 ms;
for larger values the perceived quality becomes unaccept-
able. It is interesting to notice that for values of the jitter
exceeding 25 ms the influence of packet loss on UPQ is

quite small. The variation of the PESQ score is only of
about 15% for loss rates ranging from 0% to 10% when
jitter equals 25 ms and less than 10% for jitter values larger
than 50 ms.

In some cases, for example when jitter equals 50 ms
there is an increase of UPQ with loss rate (see Figure 7). We
believe that this can be explained by the decrease of the
perceptual effect of jitter once packet loss becomes high.

Figure 7. PESQ score versus average loss rate for

VoIP tests.

The main reason for the steep decrease of quality with

jitter (see Figure 8) is due to the small size of the dejittering
buffer (80 ms). We have selected this size in order to have a
highly interactive scenario, with an overall delay lower than
150 ms. A trade-off can be made by decreasing the required
level of interactivity, thus allowing for larger dejittering
buffers.

Figure 8. PESQ score versus average jitter for

VoIP tests.

ISBN: 1-56555-269-5 385 SPECTS '03

5 CONCLUSIONS
The novelty of our work is that we are able to both

accurately measure network QoS parameters and objectively
assess application UPQ in parallel. This allowed us to
quantify the relationship between QoS parameters and UPQ
for two applications (file transfer and VoIP) and identify
their QoS requirements.

For file transfer, we observed the expected decrease of
goodput with packet loss. The dependency is linear and
goodput decrease is not very large in the range of 0% to 5%
packet loss. For loss rates above 20%, goodput indicates a
transfer efficiency lower than 0.7. The transfer time perfor-
mance graph has a negative exponential shape, showing that
the time needed to transfer a file increases significantly with
packet loss. For loss rates around 5% and low RTTs, the
TTP is one order of magnitude smaller than the value
obtained at zero packet loss. At 25% loss rate, the time to
transfer has become several hundred times larger than in the
case the loss rate is smaller than 5%.

VoIP results show that for packet loss less than 10%
and jitter below 20 ms the perceived speech quality is good
(PESQ scores are larger than 3). For jitter exceeding 50 ms
the quality of the speech signal becomes unacceptable, the
distortion of the speech signal being very large.

Using our results it is possible to predict an application
UPQ based on the corresponding measured network QoS
parameters and understand the reasons of possible
application failure. One can also determine the end-to-end
network QoS requirements for an application to run with a
desired UPQ level. Mapping high-level user requirements to
network QoS conditions is also a key issue in Service Level
Agreement contracts.

6 FUTURE WORK
In the near future we shall perform more tests with

VoIP using different codecs. We also plan to quantify the
influence on UPQ of dejittering buffer sizes, reordering
out-of-order packets and possibly packet loss concealment.

The next step will be to study the interaction between
several traffic flows sharing the same link and having the
same, or different, network behaviour – elastic or inelastic.
These realistic conditions will help us generalize the
conclusions we have drawn so far for separate applications.

We also plan to extend our area of interest to other
network applications, such as web browsing, video
streaming and teleconferencing, for which UPQ is of
considerable importance.

Acknowledgments
We wish to thank professor Vasile Buzuloiu for his

continuous feedback and invaluable suggestions. Brian
Martin, Catalin Meirosu and Jamie Lokier had a significant
contribution to the early development of the clock
synchronization system and pioneered Alteon NIC re-
programming.

References
[1] Arlitt, M.F. and C.L. Williamson. 1996. "Web Server

Workload Characterization: The Search for Invariants",
Proc. SIGMETRICS, Philadelphia, PA, USA, April.

[2] California Institute of Technology. 2002. FAST Kernel
for Large Data Transfers,
http://netlab.caltech.edu/FAST/, November 23.

[3] Campanella, M.; P. Chivalier; A. Sevasti; N. Simar.
2001. "Quality of Service Definition", SEQUIN Project,
March.

[4] Campanella, M.; M. Carboni; P. Chivalier; S. Leinen; J.
Rauschenbach; R. Sabatino; N. Simar. 2002.
"Definition of Quality of Service Testbed", SEQUIN
Project, April.

[5] Cavalli, V. and E. Verharen. 2002. "TF-STREAM Real
Time Multimedia Applications", TERENA Technical
Report, March.

[6] Demichelis, C. and P. Chimento. 2002. "Instantaneous
Packet Delay Variation Metric for IPPM", Internet
draft, work in progress, April.

[7] Ferrari, T.; S. Leinen; J. Novak; S. Nybroe; H. Prigent;
V. Reijs; R. Sabatino; R. Stoy. 2000. "Report on
Results of the Quantum Test Programme", Quantum
Project, June.

[8] Goderis, D. (editor). 2000. "Functional Architecture
Definition and Top Level Design", TEQUILA Project,
September.

[9] Griffin, D. (editor). 2000. "Selection of Simulators,
Network Elements and Development Environment and
Specification of Enhancements", TEQUILA Project,
May.

[10] Internet2 End-to-End Performance Initiative,
http://e2epi.internet2.edu/.

[11] ITU-T Recommendation G.107. 2000. "The E-model, a
computational model for use in transmission planning",
ITU, May.

[12] ITU-T Recommendation G.711. 1993. "Pulse Code
Modulation (PCM) of Voice Frequencies", ITU.

[13] ITU-T Recommendation I.380. 1999. "Internet
Protocol (IP) Data Communication Service - IP Packet
Transfer and Availability Performance Parameters",
ITU, February.

[14] ITU-T Recommendation P.800. 1996. "Methods for
subjective determination of transmission quality", ITU,
August.

[15] ITU-T Recommendation P.861. 1998. "Objective
quality measurement of telephone band (300-3400Hz)
speech codecs", ITU, February.

[16] ITU-T Recommendation P.862. 2001. "Perceptual
evaluation of speech quality (PESQ), an objective
method for end-to-end speech quality assessment of
narrow-band telephone networks and codecs", ITU,
February.

[17] ITU-T Recommendation Y.1541. 2001. "Network
Performance Objectives for IP-Based Services", ITU,
draft, October.

ISBN: 1-56555-269-5 386 SPECTS '03

http://netlab.caltech.edu/FAST/
http://e2epi.internet2.edu/

[18] Jacobson, V. 1988. "Congestion Avoidance and
Control", ACM Computer Communication Review,
SIGCOMM ’88 Symposium in Stanford, CA, USA,
August.

[19] Kalidindi, S. and M. Zekauskas. 1999. "Surveyor: An
Infrastructure for Internet Performance Measurements",
NET’99, San Jose, CA, USA, June.

[20] Korcyl, K.; G. Sladowski; R. Beuran; R. W. Dobinson;
C. Meirosu; M. Ivanovici; M. L. Maia. 2003. "Network
performance measurements as part of feasibility studies
on moving part of the ATLAS Event Filter to off-site
Institutes", First European Across Grids Conference,
Santiago de Compostela, Spain, February.

[21] Malden Electronics, http://www.malden.co.uk.
[22] Manikis, D. (editor). 2001. "Overview of the

TEQUILA Reference Testbeds", TEQUILA Project,
February.

[23] Miras, D. 2002. "A Survey on Network QoS Needs of
Advanced Internet Applications", working document,
Internet2 QoS Working Group, December.

[24] National Institute of Standards and Technology, NIST
Net, http://snad.ncsl.nist.gov/ itg/nistnet/.

[25] Reijs, V. "Perceived Quantitative Quality of
Applications", http://www.heanet.ie/Heanet/projects/
nat_infrastruct/perceived.html.

[26] RIPE NCC Test Traffic Measurements,
http://www.ripe.net/ttm/.

[27] Servis, V. 2001. "Measuring voice quality over VoIP
networks", The TOLLY Group, December.

[28] Surveyor Project, Advanced Network & Services,
http://www.advanced.org/surveyor/.

[29] Teitelbaum, B. (editor). 1999. "QBone Architecture",
Internet2 QoS Working Group, draft, August.

[30] Tirumala, A.; F. Qin; J. Dugan; J. Ferguson; K. Gibbs.
"Iperf", http://dast.nlanr.net/Projects/Iperf/.

ISBN: 1-56555-269-5 387 SPECTS '03

http://www.malden.co.uk
http://snad.ncsl.nist.gov/itg/nistnet/.
http://www.heanet.ie/Heanet/projects/nat_infrastruct/perceived.html
http://www.ripe.net/ttm/
http://www.advanced.org/surveyor/
http://dast.nlanr.net/Projects/Iperf/

	TITLE PAGE
	SPECTS Table of Contents
	ACROBAT HELP
	Network Quality of Service Measurement System for Application Requirements Evaluation
	Keywords:
	Abstract
	1 INTRODUCTION
	2 SYSTEM ARCHITECTURE
	2.1 Off-the-shelf system components
	2.3 QoS measurement system
	2.4 UPQ metrics
	2.4 UPQ measurement system

	3 SYSTEM EVALUATION
	4 EXPERIMENTAL RESULTS
	4.1 File transfer
	4.2 VoIP

	5 CONCLUSIONS
	6 FUTURE WORK
	Acknowledgments
	References

