
978-1-6654-3156-9/21/$31.00 ©2021 IEEE

Secure IoT Development: A Maker’s Perspective
Sian En OOI, Razvan BEURAN, Yasuo TAN

School of Information Science
Japan Advanced Institute of Science and Technology

1-1 Asahidai, Nomi City, Ishikawa Prefecture, 923-1292 Japan
{sianen.ooi, razvan, ytan}@jaist.ac.jp

Abstract—Efforts to tackle the challenges in securing Internet-
of-Things (IoT) across the entire stack have been growing as
IoT spreads over many domains. Applications of IoT in various
domains are further accelerated by the Maker movement, as
anyone with “googling” ability, the right tools and skill sets can
develop a product. This creates an even larger attack surface, as
security is generally not the main focus of a maker.

To reconstruct the development process of a platform, we cre-
ated a maker-oriented IoT hardware, MkIoT, and implemented
an end-to-end (E2E) application prototype by leveraging existing
off-the-shelf embedded hardware, open-source code, examples
and tutorials provided by maker communities. The development
process allowed us to investigate the challenges in securing both
device and E2E communication, and in implementing life-cycle
management using the public cloud. This paper examines and
demonstrates the stumbling blocks and pain points of implement-
ing a secure IoT application from the unique perspective of a
maker, and serves as a reference for IoT makers, developers and
researchers alike.

Keywords—Internet of Things (IoT), secure development, IoT
hardware platform, IoT life-cycle, maker movement

I. INTRODUCTION

As technological development advances, it makes tech-
nology more affordable and accessible to mass consumers.
This trend is also observed in the IoT space, where the
market for smart devices is increasing at a fast pace. While
many technologies are technically complex and may require
expertise in the field for development, another trend has
emerged to empower the layperson: the “Maker” movement.
The Maker movement has not only instilled “Do It Yourself”
(DIY), hacking and tinkering culture into the general public,
but found its way into the educational curriculum, to foster a
better linkage between theory and practical applications [1],
[2].

“You have a 9/10 chance that somebody already made it
and that it’s posted somewhere on the site. You would be
dumb not to use it” [3]. This statement summarizes a maker’s
approach, where prototyping first is preferred to planning.
Moreover, most maker-related discussions and tools do not
place much emphasis on security [4], [5]. While various parties
made efforts to promote secure IoT systems,such as best-
practice security guidelines outlined by public cloud providers,
semiconductor companies, the burden still falls on the maker
to properly design and secure their creations. Furthermore, it is
also difficult to practically validate and verify security in IoT
due to its heterogeneous nature. While there is no one-size-
fits-all approach when it comes to practical IoT experiments

to investigate the pitfalls in proper implementation of security,
in this paper, we attempt to analyse such issues by recon-
structing the development process of an IoT application from
a maker’s perspective. This involves the design, development
and implementation of a reference IoT system, MkIoT in order
to capture the “behind the scenes” process. Thus, the core
contributions of this paper are:

• Design an IoT hardware platform, MkIoT, to facilitate
secure IoT development for makers

• Use MkIoT to demonstrate the challenges in securing the
device and end-to-end communication

• Investigate the secure life-cycle management for public
cloud applications

The remainder of the paper is organized as follows. Section
2 introduces the process of deriving the design requirements
for IoT development. The technical details regarding the
developed IoT hardware platform, MkIoT, are described in
Section 3. Security implementation followed by its analysis
and discussions are presented in Section 4. Section 5 covers
the development and evaluation of the life-cycle management.
The paper ends with conclusions and references.

II. REQUIREMENTS FROM A MAKER’S PERSPECTIVE

Designing an IoT device for practical verification is com-
plex, as there are a wide range of IoT applications and many
heterogeneous IoT devices that complement them. To deal
with such complexity, the type of potential IoT applications
can be narrowed while preserving flexibility to test possible
applications on the same platform. These design decisions
should be addressed by considering the following requisites:
i) ease of development, ii) data acquisition, processing and
storage, iii) connectivity, iv) power, v) security and vi) cost.

1) Ease of Development: IoT development should be rela-
tively manageable, as the increase in development complexity
will directly affect the cost for development and more im-
portantly, the time-to-market. The ease of development can
be determined by the accessibility, availability and quality of
the required software and hardware tools. At the same time,
many hardware and software enterprises introduced various
reference development kits for their ecosystems to enable
makers to prototype quicker (e.g., Microsoft Azure Sphere
Guardian dev kit and Azure Cloud). Technical support by both
manufacturers and communities is also an important factor in
evaluating ease of development. This is analogous to the Stack
Overflow importance for software development.

2) Data Acquisition, Processing and Storage Requirement:
The sensor, actuator, data processing and storage requirements
are dictated by the target application. Data acquisition require-
ment would determine both the type and number of sensors
and actuators on an IoT device, along with the measurement
data resolution, velocity and retainment policies. The raw
measurement data obtained from the sensors often require
local preprocessing before uploading to the endpoint. This is
where the processing requirement comes into play. The storage
requirement is usually related to the processing requirement
for preprocessing and local cache.

3) Connectivity Requirement: Connectivity is a core func-
tion of IoT, which provides embedded device with the ca-
pability to communicate with other endpoints through local
network and/or the Internet. Although connectivity can be
achieved through both wired and/or wireless communication
methods, this research will put more emphasis on wireless
communication. Requirements for wireless communication in-
clude parameters such as the target operating range, distance of
signals to be transmitted, network latency, anticipated volume
and rate of data to be transmitted. Besides, fault tolerance,
security and privacy of the communication methods are also
essential connectivity requirements, especially for remote IoT
devices that employ mesh network.

4) Power Requirement: Power requirement for an IoT de-
vice is highly dependent on the target application and context.
For example, many environment sensing IoT devices for smart
home are meant to be physically tiny, wireless for both power
and communication, and are expected to have a long lifespan.
Such top-level requirements imposes a lot of constraint for
both hardware, software and even architecture of the entire
IoT application. A non-exhaustive list of requirements that
would affect the power requirement of a typical IoT device
are the number and type of sensors and/or actuators required,
sampling frequency of sensors and/or frequency of actuation,
rate of network transmission, operating range for wireless
connectivity, encryption of packets and operating lifetime for
non-rechargeable and replaceable battery.

5) Security Requirement: Device and data security, as well
as its authentication, authorization, confidentiality and integrity
of the data are paramount for any IoT devices. Before imple-
menting security, one has to establish the use cases of the IoT
application and its context. This includes identifying system
domains and concerns to deduce the target security issues. In
such circumstances, a practical approach can be applied for
the specific use cases rather than blanket application of best
practices. Detailed security requirements are further explained
in later sections.

6) Cost Requirement: IoT devices are tightly constrained
by their cost, as the above requirements directly or indirectly
contribute to the total cost. A maker may have a budget
for development, which is highly dependent on the specific
application and use cases. Costs for sensor and actuator, power
supply, dedicated cryptography chip for encryption, mainte-
nance and operational are some example costs which the
maker has to balance to satisfy their application requirements.

III. REFERENCE IOT HARDWARE PLATFORM

In order to be representative for generic IoT applications,
the scope of possible applications for the MkIoT hardware
platform should encompass common maker example use cases
and applications. We follow the requirements presented in
Section 2 for target use cases, such as simple smart home
device, asset tracking, remote sensing in agriculture and many
more applications that shares the same architecture. Thus, the
MCU used for our MkIoT should be widely used in maker
communities, supported by Arduino, have adequate processing
capability and storage while being affordable. MkIoT wired
connectivity should include a common bus to interface with
off-the-shelf sensor and industrial modules, while it should
also have WiFi and Low-power WAN (LPWAN) for wireless
communication. In addition, MkIoT should be able to be
powered through wired or battery source.

Fig. 1: Internal view of the MkIoT hardware platform.

MkIoT is composed of two main parts, as shown in
Fig. 1: i) MCU module and ii) expansion daughterboard. The
MCU is based on Espressif ESP32, a popular MCU in the
maker communities and have a large varieties of tutorial and
examples which satisfies the ease of development criteria.
The MCU module is an off-the-shelf module, the M5Sstack
ESP32 basic Core IoT development kit, which is a relatively
affordable and accessible MCU module. It features a dual-
core MCU, which runs up to 600 MIPS, 448KB ROM and
520KB SRAM. Besides, it also able to store large amount of
data locally as it supports multiple external flash chips through
its QSPI bus. The ESP32 module is equipped with both WiFi
and Bluetooth Low Energy (BLE), which partly satisfy the
connectivity requirement. The M5Stack module also supports
both wired and battery operation, which satisfy the flexible
power requirement.

The more interfaces the device has, the more application
domains can explore. Therefore, for the design of MkIoT, we
have placed emphasis on both wired and wireless connectivity.

1) Wired Connectivity: The ESP32 comes standard with
I2C, I2S, SPI, UART and CAN bus. To allow MkIoT to
communicate via industrial standard communication, RS485,
we developed a daughterboard to provide RS485 comm though
both NXP SC16IS752IBS I2C-to-dual UART interface and
LTC1480 for ultra-low power RS485 transceiver. A DC step-
up regulator was also added to the daughterboard to provide
a 12V power rail to industrial device powering off MkIoT.

2) Wireless Connectivity: In order to support LPWAN,
a Sigfox transceiver, Wisol SFM10, was included in the
daughterboard design. There are two SFM10 transceiver that
are tested in our work, which are RC3 for Japan and RC4 for
Asia Pacific countries, such as Malaysia. The development and
testing was done first in Ishikawa, Japan and later in Kuala
Lumpur, Malaysia, and in both cases E2E communication
from MkIoT to the Sigfox cloud was successful. One of
the drawbacks observed was the absence of signal indoors,
rendering it useless in such an environment. The u-blox SAM-
M8Q GPS module was also included to support asset tracking
use cases.

IV. SECURE END-TO-END

For our use cases, we implemented an end-to-end (E2E)
application prototype in which the IoT device sends data to
or receives data from the cloud. Hence, focus is placed on
the device and E2E communication integrity and security.
Below we explore the architectures and security practices that
are relatively straightforward for a maker to implement, and
analysed the pitfalls encountered throughout the process. This
analysis is done under the assumption that the public cloud
provider implements best security practices to safeguard their
service and infrastructure [6].

A. Securing Communication via Sigfox and MQTT
In order to implement secure E2E communication, we need

to ensure transaction-level security by measuring integrity
of the entire system and transaction, E2E. For secure E2E
communication, we implement it over LPWAN and IP network
to the public cloud endpoint.

1) Sigfox Security: Sigfox is a lightweight protocol, suit-
able for very-low power remote sensor IoT application. Some
use cases for Sigfox are remote sensing and asset tracking. The
lightweightness of Sigfox also constrains the application to 12-
bytes payload for uplink and 8-bytes payload for downlink.
Besides, there is also a limit of up to 140 uplink and 4
downlink messages per day, which is still sensible for its target
use case market.

For our implementation using LPWAN, two architectures
were considered, where their endpoints are: i) Sigfox cloud
and ii) Google Cloud Platform (GCP) through Sigfox back-
end. For the first architecture, the implementation was fairly
straightforward as the SFM10 Sigfox transceiver can receive
AT commands over UART as long as the transceiver identity
is registered at the Sigfox cloud and is authorized to commu-
nicate. Further infomation on Sigfox UID and encryption key
can be found in [7]. The second architecture is actually an
extension of the first, where the uplink payload is received at
Sigfox cloud and a set of callbacks using Sigfox backend API
is setup to forward the payload to GCP HTTPS endpoint. The
transaction between Sigfox and GCP is authenticated by basic
HTTP username and password over HTTPS, for which the
credentials are stored in plain text on Sigfox backend. Hence,
at this point, we have to assume that the services provided by
public cloud providers are secure.

Sigfox frames are sent in plain text by default, although
there is encryption support since 2017, which is provided
by the Sigfox end [8]. However, there are no details about
enabling payload encryption in the SFM10 datasheet. This
restricts the makers to either utilize another transceiver or
rollout their own payload encryption, which is an issue by
itself in [7]. This issue is also covered in [9], where Sigfox
is used only for the network security itself, and delegates the
payload security issue to the makers.

2) MQTT Security: For our implementation using IP, the
IoT device communicates over the IP network using the
MQTT protocol with GCP. Before we dive into the im-
plementation details, let us look into a few key points on
MQTT security. Firstly, the original MQTT standard does not
require authentication in MQTT as mandatory [10]. While it
is possible to host an authentication-less MQTT broker in
a secured network, this is not widely practised in most of
the implementation tutorials and examples. Secondly, basic
authentication in MQTT is not as secure as mostly thought.
While authentication is supported as username and password
fields in the CONNECT message, these are sent in plain text in
TCP over the network, which is an eavesdropping risk. Many
popular MQTT setup tutorials, especially for smart homes,
are using this method, which is a risk if the maker expose the
service to public network.

In order to solve this issue, MQTT can be used over TLS to
encrypt the whole MQTT communication. While introducing
TLS on the MQTT broker has insignificant performance
penalty, that cannot be said very constrained IoT devices,
where the increase in overhead processing will reduce its
battery operational time. The maker has to balance the require-
ments in order to accommodate the overhead or settle for a
less secure implementation. For public cloud provider such as
GCP,TLS connection to their MQTT broker is mandatory.

MQTT Client

Credential:
root CA

TLS
, K

sign(JWT)

MQTT Broker IAMService

TLS: Mutual Authentication

Gen. JWT using K
sign(JWT)

Connect [id, pw=JWT]

ACK
Client ID Veri!cation | IAM

Verify JWT using K
verify(JWT)

Fig. 2: MQTT communication using TLS and JWT.

In addition to TLS, other security mechanisms can be used
to increase security, for instance, JSON Web Token (JWT),
which is also used in addition to TLS on GCP MQTT broker,
as shown in Fig. 2. JWT enables per-device authentication,
which limits the attack surface as compromised key would
only affect a single device rather than the whole group.
Besides, each JWT is only valid to up to the user setting
or maximum 24 hours, which ensures that the compromised
key will expire. Google maintains a sample Arduino library
to make implementation simple for makers. One issue that
affected many makers using the Arduino library to connect
to GCP is that there is no built-in mechanism to refresh the

JWT. This requires the maker to periodically disconnect and
reconnect back to GCP with a new JWT causing session inter-
ruption, which may not be ideal for certain IoT applications as
unwanted latency is introduced. Another issue that we faced
during implementation is the connection rejection if the JWT
timestamp does not tally with GCP side. JWT is also time
dependent; hence, there is a risk of DoS as the IoT device is
now dependent on NTP servers to resolve its system time.

B. Securing the ESP32 based IoT Device
The ESP32 MCU has some built-in security features, such

as secure boot, flash encryption, 1024-bits OTP, cryptographic
hardware acceleration for AES, hash (SHA-2), RSA, ECC
and random number generator (RNG). In this section, we will
explore and discuss on how to use the MCU hardware security
features to secure the device integrity.

1) Arduino Core: The Arduino software platform plays a
very important role in the maker culture. It enables laymen to
tinker with programming and electronics with little effort due
to its extensive abstraction of the hardware layer into simple
functions to control the MCU’s I/O and perform computations.
Arduino platform is also famous for its extensive software
libraries, which are contributed by the open source commu-
nities. Arduino also provides an IDE to develop applications,
direct firmware build and upload to the ESP32 device from
the user friendly IDE. While these may be positive from a
ease of development standpoint, it may also quickly turn into
a security nightmare. There is a number of vulnerabilities
that make Arduino easily exploitable as presented in [11].
Reference [5] also includes a case study on the Arduino
vulnerability impact on IoT devices.

2) Locking Down Arduino on ESP32: The ESP32 MCU
is often paired with an external flash chip that stores the
user applications and data. Hence, any maker with physical
access to the ESP32 based device could read the flash chip
content via serial or desoldering and reading the physical
flash chip directly through SPI. Firmware reverse engineering
and modification could be done if the device maker does
not secure the device sufficiently. Fortunately, ESP32 features
hardware-based flash encryption and secure boot to prevent
unwanted flash accesses. There’s a caveat, however, as it re-
quires the Espressif integrated development framework (ESP-
IDF), which is mainly low-level embedded C, to enable the
security features. Since the prototype implementations were
developed using Arduino, we decided to keep the Arduino
code, as it is difficult for a non-technical maker to jump from
Arduino into embedded C. One workaround is to use Arduino
core as a “component” in ESP-IDF as shown in [12].

We ported the Arduino code using the workarounds in [12]
to ESP-IDF, but many issues had to be ironed out, such as
external SPI RAM failing to initialise, broken links to BLE,
missing TLD setting and many more. Besides, the Arduino
core had to be compiled to specific version of ESP-IDF, which
were outdated (v3.x) compared to the latest stable (v4.x),
missing out certain security features and bug fixes. Enabling
the security features in ESP-IDF is trivial as shown in Fig. 3.

Fig. 3: ESP-IDF security features.

The ESP32 bootloader, ported Arduino application code and
custom partition table from Arduino minimal SPIFFS partition
scheme were prepared. Then, an encryption key was generated
and burned into the ESP32 device eFuse as shown in Fig. 4.

Fig. 4: eFuse after enabling flash encryption and burning the
encryption key into the eFuse BLK1 register.

The unencrypted bootloader, partition table and application
are then written to the ESP32, which will auto reset and
encrypt the bootloader, application partitions and any partition
that is flagged as encrypted (see Fig. 5).

Fig. 5: ESP32 device security issues log on first boot.

While Fig. 5 shows some security warnings regarding
insecure configurations, we did not fully lock down the ESP32
device as it would limit our ability to further analyse the flash
after encryption. Moreover, if there are any errors during flash
encryption procedures, the ESP32 may be bricked, rendering
the device useless.

3) Flash Chip Content: Next, we will analyse the ESP32
flash chip for both unencrypted and encrypted scenarios. For
ESP32 series, all except ESP32 pico have the firmware stored
on an external memory chip. We read the flash chip content
through ESP32 serial for both scenarios, where a sample of
the bootloader before and after encryption is shown in Fig. 6.

However, through analysis, we found that not every partition
is encrypted. By default, only the bootloader, partition table,
OTA data and App related partitions are encrypted [12].
The prototype code that performs secure E2E communication
utilized the Arduino EEPROM library to store its private keys

Fig. 6: Extracted binary (bootloader section) before and after flash encryption.

in the flash. The earlier version of the EEPROM library reads
and writes contents into a fixed partition block where the
recent version emulates the read write functions and store the
data in the non-volatile storage (NVS) partition. NVS partition
is not directly compatible with flash encryption while fixed
EEPROM partition block is unencrypted by default. Hence,
the application private keys can still be read as plain text, as
shown in Fig. 7.

Fig. 7: Plain-text private keys in EEPROM after encryption.

Fig. 8 shows the encrypted, unencrypted and unencryptable
partitions to the Arduino minimal SPIFFS partition scheme.
While it is possible to encrypt the EEPROM partition by
setting the encryption flag, the Arduino EEPROM library does
not support such operations as its uses esp partition write()
to write data into the partition instead of the required
esp rom spiflash write encrypted(). For NVS based EEP-
ROM case, one method to encrypt the private keys is to encrypt
them in software before storing them into the NVS.

B
o

o
tlo

a
d

e
r

P
a

rt
iti

o
n

Ta
b
le

N
V

S

O
T
A

 D
a
ta

A
p

p
0

A
p

p
1

E
E

P
R

O
M

S
P

IF
F

S

Encrypted Unencryptable Encrypted Unencrypted

0x0000 0x8000 0x9000 0xE000 0x10000 0x1F000 0x3D0000 0x3D1000 0x400000

Fig. 8: Encrypted and unencrypted partitions in ESP32 device.

Securing the device and communication is just one part of
the puzzle. In the next section, the process of securing the
cloud for IoT life-cycle management is discussed.

V. IOT LIFE-CYCLE MANAGEMENT

Implementing security measures according to current best
practises does not guarantee the IoT device will be secure
for the rest of its operational lifetime. Manufacturers must
have the capabilities to rollout bug fix and security patches
efficiently as new security issues are discovered. Even for inci-
dents such as unpatchable exploits (e.g., ESP32 fault injection
vulnerability [13]), the capability to decommission the IoT
device so as to minimize the damage is essential. Next, we
discuss about an IoT life-cycle management implementation
with Google Cloud Platform (GCP) for the provisioning,
service, maintenance and decommissioning phases.

1) Provisioning: Since the introduction of [14], devices that
are able to connect to the Internet must not have default pass-
words or even if there is a default password, it must be able
to generate a new means of authentication before full access
is granted to the device. While this legislation does not limit
device manufacturers to implement a fixed set of measures, it
increases the complexity of general device provisioning. This
may require secure facility for key generation and provisioning
procedures [15].

We developed and implemented a streamlined IoT device
provisioning to GCP. The device provisioning tool can be
deployed on any platform that supports Python, ESP-IDF
and Google API python client. A Raspberry Pi 3 was setup
to perform firmware programming, key generation and GCP
device registration, while the GCP Cloud IoT Core is setup
as the MQTT gateway and device manager. First, the “blank”
ESP32 device is connected to the Raspberry Pi 3 through serial
communication, where initial check will be done to verify that
the connected device is an ESP32 device before uploading
the pre-encrypted firmware into the device. Three 256-bits
ECDSA PKI key pairs are generated before the private keys are
send through serial to the ESP32 device. Although ECDSA is
relatively new when compared to the RSA encryption standard,
the resulting keys are smaller and cryptographic processing
is faster with ECDSA, which is suited for constrained IoT
devices. Verification of the private keys are also done to verify
the integrity of the keys as low voltage serial communication
may be affected by electrical noise from the surrounding
during hi-speed transmission. A magic packet will then be
sent to trigger private key install mode on the device and the
tool will provision the public keys and device ID on GCP.

2) Service: The service phase includes the capabilities
to manage the device, monitor and remote command and
control from the cloud. Most cloud platforms provide the
basic functionality to manage individual device or a group of
devices with integrated event logging. In our implementation,
Google IoT Core logs the event according to registry wide
default policy or per device into its platform monitoring suite.
Events such as MQTT heartbeat, errors can be selectively
directed into user-created log sinks such as Pub/Sub, which
can in turn trigger a Cloud Function to handle the event. We
implemented a monitoring function that parses log file for the
MQTT heartbeat to determine when a device was last seen,
and alert the user if it is “missing” after a period of time;
the alert is sent to the user’s Slack messaging app via the
messaging bot webhook API.

3) Maintenance: Firmware over-the-air (FOTA) update is
part of the maintenance phase. The Arduino Core provides
FOTA update over HTTP, which enables ESP32 to download

firmware from a target server into its App0/App1 partition
and switch to the updated firmware. The FOTA update can be
implemented in two ways: i) the device periodically polls the
target server to check whether a newer firmware is available,
where it automatically updates itself or require the user to
approve the update, ii) the device is notified of new firmware
through the cloud as a command and updates itself. We utilize
the remote command function to push the update command to
the IoT device as it allows flexible implementation of user
notification about updates and permissions. The GCP Cloud
Storage was used to store the firmware binaries. Moreover,
a GCP Cloud Function was set up to trigger on file upload
into the bucket, where proper identity and access management
(IAM) parameters is set and the Cloud IoT Core device registry
is updated with file URL. The URL is then sent to device as
a command through Cloud IoT Core. This allows the device
to securely receive the target URL through a secured channel
instead of polling a predefined address, which is less flexible.

After the device receives the FOTA command, it must
verify that the URL endpoint supports HTTP and type
(application/octet-stream). Content length is verified to ensure
that the application partition is able to store the new firmware.
The OTA data partition is updated for the next reboot to
run the new firmware after it is downloaded and verified.
If the new firmware crashes after a FOTA update, rollback
can be enabled to ensure the device working state. However,
from a security perspective, anti-rollback is often implemented
to prevent exploit by downgrading to vulnerable firmwares.
Another issue we faced while securing FOTA was the firmware
IAM permission in GCP Cloud Storage. Our implementation
allows public read access to the firmware, which is a security
risk as the firmware binaries are unencrypted. Hence anyone
with the binary URL could download the firmware from the
Cloud Storage for reverse engineering. GCP Cloud Storage
only provides OAuth method for authenticated access, which is
impractical for embedded devices. Even methods such as using
API keys do not serve as an authentication method, as the key
is only used for accounting purposes, such as bandwidth usage
for that key. Thus, such limitation should be considered when
implementing IoT life-cycle management.

4) Decommissioning: Decommissioning an IoT device
from the cloud can be done in several ways, including but
not limited to decommissioning via public key expiry for
each device on the cloud or via disabling access to the cloud
gateway. Most cloud providers provide options for setting
public key expiry, disabling and deleting the device from its
registry. Mass decommissioning or a temporary disable can
also be swiftly rolled out via API in case of a massive cyber-
attack.

VI. CONCLUSION

In this paper, we presented the challenges of implementing
a secure IoT application from a maker perspective. The
development process of an IoT application, and the functional
and non-functional design requirements were meticulously
described. An IoT hardware platform, MkIoT, was designed

and developed to facilitate secure IoT development for makers.
We demonstrated the efforts necessary to secure IoT imple-
mentation, including communication, device and the cloud.
For E2E communication, we covered both LPWAN Sigfox
and MQTT to public cloud implementations. Issues with
Sigfox payload encryption and securing MQTT session were
investigated and discussed. Furthermore, for the device, maker-
friendly Arduino code had to be ported into ESP-IDF in order
to implement flash encryption. We have also shown that a
flash encrypted ESP32 device may not be fully encrypted and
discussed the pitfalls in ensuring the device is fully secure.
Finally, we implemented a life-cycle management for the IoT
device using public cloud. In each phases, implementation
details and security implications were discussed in detail.

REFERENCES

[1] C.-Y. Yeh, Y.-M. Cheng, and S.-J. Lou, “An internet of things (iot)
maker curriculum for primary school students: Develop and evaluate,”
International Journal of Information and Education Technology, vol. 10,
no. 12, 2020.

[2] D. Sarpong, G. Ofosu, D. Botchie, and F. Clear, “Do-it-yourself (diy)
science: The proliferation, relevance and concerns,” Technological Fore-
casting and Social Change, vol. 158, p. 120127, 2020.

[3] D. De Roeck, K. Slegers, J. Criel, M. Godon, L. Claeys, K. Kilpi, and
A. Jacobs, “I would diyse for it! a manifesto for do-it-yourself internet-
of-things creation,” in Proceedings of the 7th Nordic Conference on
Human-Computer Interaction: Making Sense Through Design, 2012, pp.
170–179.

[4] A. Morris and N. Lessio, “Deriving privacy and security considerations
for core: An indoor iot adaptive context environment,” in Proceedings
of the 2nd International Workshop on Multimedia Privacy and Security,
2018, pp. 2–11.

[5] A. A. Gendreau, “Internet of things: Arduino vulnerability analysis,” A
Primer for Security, p. 32, 2016.

[6] W. M. Stout and V. E. Urias, “Challenges to securing the internet of
things,” in 2016 IEEE International Carnahan Conference on Security
Technology (ICCST). IEEE, 2016, pp. 1–8.

[7] R. Fujdiak, P. Blazek, K. Mikhaylov, L. Malina, P. Mlynek, J. Misurec,
and V. Blazek, “On track of sigfox confidentiality with end-to-end
encryption,” in Proceedings of the 13th International Conference on
Availability, Reliability and Security, 2018, pp. 1–6.

[8] Sigfox, “Sigfox technical overview,” 2017.
[9] M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, “Long-range

communications in unlicensed bands: The rising stars in the iot and
smart city scenarios,” IEEE Wireless Communications, vol. 23, no. 5,
pp. 60–67, 2016.

[10] M. Calabretta, R. Pecori, M. Vecchio, and L. Veltri, “Mqtt-auth: A token-
based solution to endow mqtt with authentication and authorization
capabilities,” Journal of Communications Software and Systems, vol. 14,
no. 4, pp. 320–331, 2018.

[11] C. Alberca, S. Pastrana, G. Suarez-Tangil, and P. Palmieri, “Security
analysis and exploitation of arduino devices in the internet of things,”
in Proceedings of the ACM International Conference on Computing
Frontiers, 2016, pp. 437–442.

[12] Espressif. To use as a component of ESP-IDF. [Online]. Avail-
able: https://github.com/espressif/arduino-esp32/blob/master/docs/esp-
idf component.md

[13] LimitedResults. Pwn the esp32 forever: Flash encryp-
tion and sec. boot keys extraction. [Online]. Avail-
able: https://limitedresults.com/2019/11/pwn-the-esp32-forever-flash-
encryption-and-sec-boot-keys-extraction/

[14] California Legislative Information. Sb-327 information
privacy: connected devices. [Online]. Available:
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill id=201720180SB327

[15] Amazon Web Services. [Online]. Available:
https://www.slideshare.net/AmazonWebServices/gpstec318iot-security-
from-manufacturing-to-maintenance

	Front_cover1
	Front_cover2
	Copyright_notice
	Foreword
	Program_Committee
	Invited_talks
	toc
	Binder1
	paper_1
	paper_2
	paper_3
	paper_4
	paper_5
	paper_6
	paper_7
	paper_8
	paper_9
	paper_10
	paper_11
	paper_0012
	paper_0013
	paper_0014
	paper_0015
	paper_0016
	paper_0017
	paper_0018
	paper_0019
	paper_0020
	paper_0021
	paper_0022
	paper_0023
	paper_0024
	paper_0025
	paper_0026
	paper_0027
	paper_0028
	paper_0029
	paper_0030
	paper_0031
	paper_0032
	paper_0033
	paper_0034
	paper_0035
	paper_0036
	paper_0037
	paper_0038
	paper_0039
	paper_0040
	paper_0041
	paper_0042

