
Smart Building Control System Emulation Platform
for Security Testing

Xiaoqi Weng
Japan Advanced Institute of Science and Technology

Nomi, Ishikawa, Japan
s2310019@jaist.ac.jp

Razvan Beuran
Japan Advanced Institute of Science and Technology

Nomi, Ishikawa, Japan
https://orcid.org/0000-0002-4109-3763

Abstract—Smart buildings play a crucial role in advanc-
ing the smartness of cities, with technologies like automated
control, smart sensors, and communication networks becoming
increasingly complex. In addition, ensuring the effectiveness and
reliability of these technologies requires continuous testing and
improvement. However, evaluating them in real buildings is
costly, risky, and resource constrained. Furthermore, as cyberat-
tack techniques evolve and digital transformation accelerates, the
security threats to smart buildings are also growing. To tackle
these challenges, in this paper we introduce the Smart Building
Control System Emulator (SBCSE). Developed based on real
building log data, this platform emulates control systems, IoT
devices, and communication protocols for thorough testing and
evaluation purposes. SBCSE can also be used to analyze potential
threats in various security scenarios, and to validate effective
countermeasures. Consequently, our platform can improve test-
ing efficiency and safety, reduce costs, and support system design
and maintenance. Moreover, by simulating different network
risk scenarios, it helps identify security threats and provides
actionable solutions.

Index Terms—smart building, control system, security testing,
emulation, simulation, MQTT

I. INTRODUCTION

As smart buildings evolve, the integration of Building Au-
tomation Systems (BAS) [1], Building Management Systems
(BMS) [2], smart sensors, and IoT devices is becoming more
complex. The effectiveness of these technologies depends on
continuous testing, but real-world evaluations face challenges
such as high costs, risks, and limited resources. Therefore,
simulation tools provide a more flexible, cost-effective, and
efficient alternative.

Several simulators have been developed, such as Open-SBS
[3], a cross-platform open-source smart building simulator.
However, it mainly focuses on smart home scenarios and does
not fully address the integration of smart building operating
systems with IoT devices. Other systems, such as HVAC
simulations [4], primarily focus on energy management. We
conclude that, despite these advancements, smart building
simulators are still in the early stages, facing challenges in
interoperability, real-time performance, and scalability with
building operating systems and IoT devices.

Moreover, with the advancement of cyberattack techniques
and the acceleration of digital transformation, smart buildings
face numerous cybersecurity risks. To address these chal-
lenges, researchers have proposed an IoT security framework
for smart infrastructures [5] and an ontology-based cyberse-
curity framework for IoT [6]. However, research specifically
focused on cybersecurity in smart buildings remains relatively
limited. Given the complexity and diversity of smart buildings,
more comprehensive strategies are required, such as security
testing and countermeasure analysis.

In this paper, we present SBCSE, which aims to address
the cybersecurity challenges in smart buildings. SBCSE was
designed and implemented as a platform that integrates man-
agement systems—focusing on network communication and
device motion for IoT devices such as robots and elevators—
with a security module that simulates attack scenarios. This
makes it possible for users to assess the attack impact and
validate countermeasures. Thus, we seek to advance smart
building control systems and provide tools to ensure their
security and reliability against evolving cybersecurity threats.

The remainder of this paper is organized as follows. In
Section II, we introduce the architecture of SBCSE. Section III
presents the evaluation and analysis of the experimental results
from the SBCSE. In Section IV, we discuss the attack scenario
design and preliminary experiments. The paper ends with the
conclusion and references.

II. PROPOSED SYSTEM

A. System Components

SBCSE was designed based on a smart building prototype
from a certain construction company. Figure 1 shows the main
components of the system: (i) Elevators (ELV); (ii) Building
Operating System (BOS); (iii) Robot Platform (RPF); (iv)
Robots (ROB); (v) MQTT-Broker. BOS represents the building
“operating system” that facilitates the collaboration among
building equipment, IoT devices, and various applications.
RPF is a robot control platform that enables remote robot
control and collaborative work among multiple robots. MQTT-
Broker acts as a middleware agent enabling communication
between different devices and services via the MQTT protocol.

220

2024 IEEE 29th Pacific Rim International Symposium on Dependable Computing (PRDC)

2473-3105/24/$31.00 ©2024 IEEE
DOI 10.1109/PRDC63035.2024.00041

Fig. 1. Target smart building system components.

B. SBCSE Architecture

We designed and developed SBCSE based on the analysis
of the communication log data of the real smart building
components, and the motion trajectory log data of robots from
that building. Figure 2 shows the architectural design of the
platform, which includes: network communication module,
device motion module, RPF control protocol module, utilities
module, simulator modules, and security attack module.

Fig. 2. Overview of the SBCSE architecture.

1) Network Communication Module: This module emulates
the communication between building components. We adopted
the MQTT protocol [7], which transmits messages between
devices via a central broker. The MQTT-based communication
module manages the protocol and processes data, and includes
components for defining and managing communication logic,
data models, and structures.

2) Device Motion Module: This module was mostly de-
veloped by partners to simulate IoT device movement, and it
supports the creation and management of IoT device instances.
The module is used to define the motion patterns and behaviors
for robots and elevators, such as the routes for robots and the
floor-to-floor movement for elevators.

3) RPF Control Protocol Module: This module is respon-
sible for enacting the control protocol within the RPF compo-

nent. Its implementation is based on automaton principles, and
for each task to be completed a fixed communication sequence
takes place.

4) Utilities (Utils) Module: This module includes general
functions, such as log formatting and simulation time control,
with time acceleration support added for improved efficiency.

5) Simulator Modules: The simulator modules integrate
the functionality of the various modules mentioned so far to
implement simulators for the different components, including
BOS, RPF, elevators and robots.

6) Security Attack Module: This module is used to evaluate
the security characteristics of the system components within
SBCSE by simulating different cyberattack scenarios.

7) User Interface: As shown in Figure 3, we developed an
intuitive and user-friendly graphical interface to enhance the
user experience. This interface, built with Python and Kivy, is
cross platform and high performance. Clicking on the “Start”
button initiates the simulation; upon completion, detailed logs
are displayed in the right panel for easy access.

Fig. 3. SBCSE graphical user interface.

III. SBCSE EVALUATION

A. Evaluation Method

Since SBCSE was developed based on real building logs,
we evaluated it by analyzing its internal communication logs.
For this purpose, we examined the communication flow of
SBCSE to assess the overall process and inter-component
communication, and compared its communication flow with
that of the actual system. Our goal with this evaluation was to
verify that the communication matches the actual system as
closely as possible, proving SBCSE’s accuracy and reliability
in providing a simulation that is very close to the real system.

B. Performance Assessment

The results we obtained are presented next. First, regarding
communication consistency, Figure 4 displays a comparison
of the communication flows for the real building and SBCSE.
The comparison confirms that the communication process
of SBCSE matches that of the actual system, ensuring the
accuracy of the emulation.

221

Fig. 4. Communication flow: real building log versus SBCSE log.

Due to the implementation constraints in the real system,
the communication logs of the real building mainly involve the
communication between the elevator, BOS, and RPF. However,
SBCSE also includes in the communication module imple-
mentation the communication between the robot and RPF as
an extension of the available logs, further enhancing SBCSE
functionality. Figure 5 shows the entire communication flow
according to SBCSE logs.

Fig. 5. Entire communication flow according to SBCSE logs.

Based on the communication flow shown in the figure, we
confirmed that we were able to successfully reproduce the
communication within the real system. This demonstrates that
SBCSE is reliable for conducting experiments in conditions
similar to real environments, and validates its practical utility.

IV. ATTACK SCENARIOS

A. Risk Analysis

In order to support the implementation of the attack scenar-
ios, we first conducted a comprehensive risk analysis:

• Step 1: Component Analysis – Analyzed the functionality
of each component and the data they store and process.

• Step 2: Categorizing Risks – Categorized the components
using labels to facilitate subsequent risk classification and
management.

• Step 3: Attack Surface for Components – Assessed the
components in smart buildings based on reference stan-
dards [8]–[10] using the labels assigned at Step 2 to
determine whether they have potential risks.

• Step 4: Threat Analysis and Scenario Design – Analyzed
the potential impacts and associated threats based on
the risk classifications identified in Step 3. Through this
analysis, we identified five scenarios that are of high
significance for the system components:

1) Attacks on information transmitted over the network
(man-in-the-middle attack)

2) Broken Access Control (Unauthorized Access)
3) Distributed Denial-of-Service (DDoS) attacks using

IoT botnets
4) Attacks involving malware
5) Attacks based on human error and social engineer-

ing techniques

B. Attack Scenario Design

This section introduces the prototype man-in-the-middle
(MITM) attack scenario designed for our system. The MITM
attack [11] typically involves an attacker secretly intercepting
and manipulating communication between two parties. The
components in our system that are most vulnerable to eaves-
dropping are RPF and BOS. An attacker typically follows the
next steps to execute the MITM attack:

• Step 1: Information Gathering – Collect information
about the target systems (BOS/RPF) and the communi-
cation protocols used by the broker to identify potential
vulnerabilities.

• Step 2: Initial Positioning – Position the device controlled
by the attacker within the communication path between
the BOS/RPF and the MQTT broker.

• Step 3: Interception – Intercept and capture the commu-
nication between the BOS/RPF and the broker.

• Step 4: Manipulation – Manipulate the intercepted com-
munication to alter the behavior of the elevator and robot.

• Step 5: Exfiltration – Extract sensitive data from the
intercepted communication.

• Step 6: Clearing Traces – Remove all malicious software
and clean system logs to hide the evidence of the attack.

222

C. Preliminary Experiments

This section presents preliminary experiments with an
MITM attack aimed at BOS. For this purpose, we added an
MITM attack module in SBCSE. However, to minimize exe-
cution risks, we skipped initial steps and assumed successful
scanning and eavesdropping (steps 1 through 3 above).

As shown in Figure 6, the MITM attack scenario involves
RPF sending an “Open” command to the elevator through
BOS. The attacker intercepts this communication, preventing
BOS from forwarding the “Open” command to ELV, and
fakes an “Open success” message to RPF. This causes RPF to
mistakenly send a “GettingOn” command to the robot, leading
the robot to try to enter the elevator even if the door is closed.

Fig. 6. Summary of the MITM attack scenario.

Figure 7 shows the log analysis of a successful MITM
attack, where the robot fails to enter the elevator. To prevent
a collision and physical damage, we considered that the
simulated robot is equipped with a camera for detecting the
door status, which enables it to report the failure and its reason.

As security countermeasure, we considered encrypting the
communication channel, and implemented support for the
MQTTS protocol with encryption to prevent MITM attacks.
The implementation of further countermeasures is ongoing.

V. CONCLUSION

This study addressed the shortcomings of current smart
building control system simulation platforms. By developing
SBCSE, we provided a tool to test and evaluate the perfor-
mance and security of smart building systems. The platform
offers a user-friendly interface, and a security module that
can simulate attack scenarios, helping to identify potential
vulnerabilities and propose effective security measures.

Overall, this study provides a valuable tool for the smart
building research field, and lays the foundation for future
research and development. First of all, we will focus on further
improving the experiment support aspects to address some of
the current limitations. For example, SBCSE currently focuses
on normal communication and lacks handling for packet loss,
timeouts, and errors.

In addition, expanding the SBCSE functions to address
evolving cybersecurity threats is also important. Thus, while

Fig. 7. MITM experimental log.

the current MITM attack scenario illustrates possible security
challenges in smart buildings, many other security issues need
to be addressed. Moreover, the scope of smart building control
systems is broad; future research could simulate multiple
robots, add other IoT devices, energy systems, etc.

REFERENCES

[1] W. Kastner, G. Neugschwandtner, S. Soucek, and H. M. Newman,
“Communication systems for building automation and control,” Proc.
IEEE, vol. 93, no. 6, pp. 1178-1203, 2005.

[2] S. Wang and J. Xie, “Integrating Building Management System and
facilities management on the internet,” Automation in Construction, vol.
11, no. 6, pp. 707–715, 2002.

[3] H. E. Degha, F. Z. Laallam, O. Kazar, I. Khelfaoui, B. Athamena, and
Z. Houhamdi, “Open-SBS: Smart Building Simulator,” in Proc. 2022
Int. Arab Conf. Inf. Technol. (ACIT), pp. 1-15,2022

[4] R. Zhang and T. Hong, “Modeling of HVAC operational faults in
building performance simulation,” Appl. Energy, vol. 202, pp. 178-188,
Sep. 2017.

[5] J. Pacheco and S. Hariri, “IoT security framework for smart cyber
infrastructures,” in Proc. 2016 IEEE 1st Int. Workshops on Found. Appl.
Self Syst. (FASW), pp. 242-247, Sep. 2016

[6] B. A. Mozzaquatro et al., “An ontology-based cybersecurity framework
for the internet of things,” Sensors, vol. 18, no. 9, p. 3053, Sep. 2018.

[7] M. B. Yassein, M. Q. Shatnawi, S. Aljwarneh, and R. Al-Hatmi,
“Internet of Things: Survey and open issues of MQTT protocol,” in
Proc. 2017 Int. Conf. Eng. & MIS (ICEMIS), pp. 1-6, May 2017

[8] European Union Agency for Cybersecurity, “Good Practices for Se-
curity of Internet of Things in the context of Smart Manufacturing,”
enisa.europa.eu, 2018.

[9] Ministry of Economy, Trade and Industry (METI), “Cyber-Physical
Security Measures Guideline for Building Systems,”, 2023. Available:
https://www.meti.go.jp/policy/netsecurity/wg1/bill gideline 2.pdf. [Ac-
cessed: Aug. 26, 2024].

[10] OWASP, “OWASP Top 10 - 2021,” Available: https://owasp.org/Top10/.
[Accessed: Aug. 26, 2024].

[11] M. Conti, N. Dragoni, and V. Lesyk, “A survey of man in the middle
attacks,” IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp.
2027-2051, 2016.

223

