
StarBED2: Large-scale, Realistic and Real-time
Testbed for Ubiquitous Networks

Junya NAKATA
Satoshi Uda

Toshiyuki Miyachi
Kenji Masui

Razvan Beuran
Yasuo Tan

Ken-ichi Chinen
Yoichi Shinoda

Hokuriku Research Center, National Institute of Information and Communications Technology
Internet Research Center, Japan Advanced Institute of Science and Technology

School of Information Science, Japan Advanced Institute ofScience and Technology

Abstract— Nowadays many new technologies are being devel-
oped and introduced for Internet, home networks, and sensor
networks. The new technologies must be evaluated in detail
before deployment. However the above mentioned networks have
a large number of nodes and a complicated topology. Therefore
it is difficult to analyze such networks using typical network
simulators. Accordingly testbeds for these networks must be
able to perform accurately emulation of large-scale networks
with a complex topology. In order to implement a testbed that
satisfies these requirements, we developed a large-scale, realistic
and real-time network testbed, StarBED, using hundreds of PCs,
and switched networks. We are now implementing StarBED2,
which expands StarBED so as to be suitable for emulating
ubiquitous networks by introducing several new concepts. In this
paper we describe first the present StarBED, its design concept,
overall architecture, implemented functionalities, and some of
the experiments we performed. Then we introduce StarBED2,
its design policy, architecture, and additional components.

I. I NTRODUCTION

Today various kind of ubiquitous networks including sensor
networks and home networks are researched more and more
actively, or are already in use. As the ubiquitous networks have
been connected to the Internet and introduced to our life, their
influence on our life grows. This means that if some problems
occur on the Internet and ubiquitous networks, they may affect
our life.

Therefore, the importance of evaluating new algorithms
and their implementation is increasing. The current Internet
is already one of the important infrastructures for our life.
Running and evaluating newly developed distributed software
directly on the current Internet is no longer an option, because
they may severely impact on the existing crucial services.

In order to evaluate new algorithms, it is popular to use
software simulators and laboratory-level small-scale testbeds
based on actual nodes. Software simulators can easily make
experiments with large topologies. However, we cannot use the
same implementations for the real environment and it takes a
long time to execute experiments when using huge topologies
and simulating node behavior in detail. Using a laboratory-
level small-scale testbed that is based on actual nodes, we can
use the same implementations for the real environment. It is,
however, difficult to drive large-scale experiments because of
costs for preparing physical nodes and controlling them, etc.

In order to evaluate new technologies for Internet connected
to ubiquitous networks, a new testbed for ubiquitous networks
is required. Since the behavior of elements on the Internet
and ubiquitous networks is very complicated, we cannot
predict the behavior before making experiments. Moreover the
network consisting of the Internet and ubiquitous networks
is quite large. In order to introduce new technologies for an
infrastructure, we have to evaluate the same implementations
for the real environment using large-scale topologies since we
have to know their behavior on the real environment including
potential bugs. Unless experiments on such testbed are made,
these technologies may have bad influences on critical services
running on the infrastructure.

We implemented a large-scale practical testbed based on
actual nodes, named StarBED, that can emulate several thou-
sand nodes. The current StarBED, however, cannot satisfy the
requirements for evaluating implementations for ubiquitous
networks, since in sensor networks and home networks the
number of nodes can be huge and the nodes are naturally
heterogeneous.

To this purpose we designed StarBED2, by enhancing
StarBED for realizing a large-scale ubiquitous network emula-
tor. It enables emulation of ubiquitous networks with hundreds
of thousands of heterogeneous nodes.

In this paper, we describe and discuss requirements for em-
ulating ubiquitous networks and existing methods for making
experiments, then we explain current StarBED and the design
of StarBED2.

II. REQUIREMENTS FOREMULATING UBIQUITOUS

NETWORKS

In order to determine what is required for a testbed for
ubiquitous networks and how it can be implemented, we
need to figure out the characteristics of ubiquitous networks,
and clarify how they are different from computer networks.
The differences between ubiquitous networks and computer
networks are mentioned in the following subsection.

A. Characteristics of Ubiquitous Networks

Ubiquitous networks have different properties than com-
puter networks in many aspects such as the following:

• variety of nodes

In computer networks, similar computers are used as
nodes which communicate with each other through a
unified protocol, TCP/IP, on a unified network, IEEE802.
On the other hand, nodes and networks to be used
for ubiquitous networks vary in hardware and software
architecture, amount of memory, and acceptable physical
size, according to their purpose and requirements for
them, such as cost efficiency, computational ability, thrifty
power consumption, expected lifetime, etc. Cheaper cost
and longer operational time are often required from the
nodes and networks. This means the ability of each
node of the ubiquitous networks is very limited in many
aspects such as computational power, memory capacity,
access networks coverage, etc. While most of nodes in
ubiquitous network are relatively simple, rich nodes can
participate in the same networks simultaneously. Thus
ubiquitous networks must mediate the communication be-
tween multiple nodes with significantly different abilities.

• variety of network media
For the same reasons mentioned above, the network
media of ubiquitous networks are chosen in function of
the requirements for the networks such as low power
consuming, ease of installation, low running cost, and
etc. The IEEE802 family, low power wireless networks,
Power Line Communication (PLC), and telephone lines
are used as access network for home networks. For sensor
networks, low power wireless networks are used as access
networks. The protocols used for communication are
naturally different according to the access network media.

• huge number of nodes
Ubiquitous networks consist of a huge number of small
nodes existing close to each other, and access networks
for which typically low power wireless networks are
used. Because of the relatively poor ability of the nodes
and limited coverage of the access networks, the nodes
must stay in close connection , work cooperatively, and
communicate frequently with each other. Accordingly,
the number of nodes in a certain area naturally becomes
greater than that in regular computer networks.

• importance of interaction with surrounding environment
In most applications of ubiquitous networks, nodes of the
network tend to interact actively with the surrounding
environment in many ways. For example, the role of
sensor network nodes is normally to obtain some kind
of information from the nearby environment, and com-
municate it to other nodes. The role of nodes in home
networks may also include some kind of measurement
which may impact on their own behavior. For the above
reasons, interaction between the nodes and environments
is important in ubiquitous networks.

• importance of geographical information
In computer network services, servers and clients can
communicate with each other regardless of their location
are. In other words, computer networks work without
awareness of location. In contrast, location of nodes
is significant for ubiquitous networks. For example, in

sensor networks the location of nodes is one of the most
important information which the nodes have to tell each
other because the information is inseparably related to
their location.

• persistency of network topology
The topology of sensor networks is changing from hour
to hour when mobile ad-hoc networks are used as access
networks because of the condition of signal propagation
and routing algorithm. Changing the topology may cause
packet loss or increase of delay and latency.

The required functionality for testbeds will be presented in
the following section.

B. Testbed Required Functionality

Some of the requirements for testbeds come from the char-
acteristics mentioned above, so these characteristics affect the
design and implementation of testbed for ubiquitous networks.
To implement a testbed which is appropriate for emulation
of ubiquitous networks, the testbed must have the following
functionality:

• emulation of surrounding environment
In ubiquitous networks, the information obtained from
surrounding environment is more important in compar-
ison to computer networks. Accordingly, a testbed for
ubiquitous networks has to support emulation of the en-
vironment and provide the interface between the emulated
nodes and environments by which the nodes can obtain
necessary information.

• provision an interface between physical space and logical
space
In the past, evaluations of ubiquitous networks were
done in either fully emulated test system using virtual
nodes, networks, and surrounding environments, or fully
equipped real environment. It is, however, sometimes
useful that the evaluations of the networks are done in
virtual and real mixed environment in which emulated
nodes, networks, environment can work together with real
ones. There are some abstraction levels in emulations of
ubiquitous networks according to the proportion of virtual
to real portion. To enable the evaluations in virtual and
real mixed environment, a testbed for ubiquitous networks
should have the interface between physical space, outside
testbed, and logical space, inside testbed through which
the virtual and real components communicate each other
without distinction. Thinking about the interaction be-
tween the virtual and real space, it is also required that
the testbed can work under real-time constraint.

• support numerous nodes
The huge number of nodes is one remarkable property
of ubiquitous networks. Testbed for ubiquitous networks
must support emulation of such large-scale networks.
Supporting emulation of a huge number of nodes is
actually not so difficult if it is allowed that infinite time
can be consumed for the execution of the emulation,
as software simulators do. But the issue here is that
emulation must be done under real-time constraints if the

emulation is run in virtual and real mixed environment.
To support both the emulation with numerous nodes and
emulation under real-time constraint a great amount of
computational power is needed.

• emulation of various architectures of nodes and networks
Nodes of ubiquitous network have a variety of architec-
tures with respect to both hardware and software, as well
as their access networks. To implement a testbed for such
networks which supports emulation of heterogeneous
networks, the testbed must have the flexibility which
enables emulation of such heterogeneous networks.

• provision multilevel emulation layer
In its development cycle, nodes of ubiquitous networks
should be tested repetitively in various forms such as
source code level emulation, binary level emulation, etc.
Supporting these multilevel emulation in one testbed
expands its capability of usage drastically. This function-
ality is of particular use if the purpose of emulation is
to expand existing ubiquitous networks by introducing
brand-new nodes into the network because user of testbed
for ubiquitous networks need not implement the brand-
new nodes in advance.

• provision emulation supporting system
The emulation in which a great amount of nodes play
the role of their own and various network media is
used is hardly ever able to be carried out manually.
Moreover, the timing of execution is important, and may
affect the result of the emulation, if the emulation must
be done under real-time constraint. For these reasons,
a ubiquitous network emulator should have automated
execution mechanism which enables execution of the
emulation in a controlled manner.

In the following section, we will take a look at the existing
methods for experiments.

Fig. 1. Town emulation

III. E XISTING METHODS FOREXPERIMENTS

Currently, software simulators and small-scale testbeds
based on actual nodes are often used for experiments. In this
section, we describe these existing methods.

A. Software Simulation

Software simulator makes experiments using abstracted
network elements. It is the most popular approach to evaluate
network technologies, and ns-2 by VINT Project [1] is the well
known example of such simulators. It makes an experiment
along configurations in which scenarios and topologies for
experiment are described by the user. The cost for making
experiments with software simulator is low because we can
make experiments even with one computer and the exper-
iments will be performed automatically with configurations
written in advance.

However, we often cannot use implementations of target
technologies directly on the Internet. Most software simula-
tors require target systems to be described under their own
modeling scheme, often using their own modeling language.
These implementations may differ from what will actually be
running on the Internet.

Software simulators run in logical time clocking. When
we perform an experiment that requires detailed action for
many nodes, it takes a long time with software simulators
compared to the actual time that is described in the scenario.
The duration required to run software simulation becomes
problematic also as we try to simulate realistic target system
under realistic environment where non-trivial aggregation of
complex network services comes into play. On the other hand,
the simulation will be finished within a short time when we
make a simple experiment on simple topologies.

Using software simulators is a good way to validate al-
gorithms or observing micro-behavior of communication pro-
tocols. However, it cannot be used to evaluate target tech-
nologies, including the bugs in the product implementations
and behavior that is not described in the specifications before
introducing new technologies to the Internet since what is
simulated in those simulators is not the protocol itself but
the model of the protocol. This is one big drawback of those
simulators, even though they are really useful at some point
in design and implementation phase of protocols.

B. Laboratory-level Testbed Based on Actual Nodes

A testbed based on actual nodes is a testbed built with
network equipments and computers used in real environments.
These testbeds consisting of a few dozen actual nodes are often
used in research organizations concerning the Internet. Wecall
these small-scale testbeds based on actual nodes ”laboratory-
level testbed based on actual nodes.”

We can use software/hardware implementations of target
technologies directly on the Internet with these testbeds.
Therefore, the behavior of target technologies and the result of
experiment is realistic compared to the real Internet. However,
the cost of making experiments with laboratory-level testbed
is larger than that of software simulator. Because we have

to prepare physical nodes needed by experiments, connect
them with cables and configure nodes and switches if it
is necessary. Especially controlling the experiments, howto
execute commands in scenarios accurately or how to perform
when an error occurs, etc., are important and difficult. When
making experiments with large-scale topologies or compli-
cated behaviors of experiment elements, the cost will become
very big.

In this kind of testbeds, software for emulating network
characteristics is often used to emulate bandwidth, delay,
packet loss and etc. Dummynet [5] and NIST Net [6] are
popular as such software.

Using these tools is not sufficient to simulate whole ubiqui-
tous network system especially from scalability point of view,
although they are more realistic than software simulators.

C. Tools for Ubiquitous Network Evaluation

There are already a number of implementations of em-
ulators and testbeds for ubiquitous networks. ns/ns-2 is a
discrete event-driven simulator which is widely-used for net-
work simulations. TOSSIM [14] is a TinyOS simulator which
aims to simulate TinyOS applications accurately in virtual
environment. ATEMU [15] is also able to emulate TinyOS
applications, and it has more flexible architecture to support
other platforms. MobiNet [16] is rather a wireless network
emulator than testbed for ubiquitous networks. MobiNet has
the same concept as ours in some regards, such as utilizing PC
cluster, real-time emulation, and high accuracy. Each testenvi-
ronment satisfies the requirements mentioned in the sectionII
partially. None of them, however, provides the method to
describe surrounding environments for user of testbed, andin-
terface to interact with real nodes. Those functionalitiesmakes
simulations drastically realistic since simulation of ubiquitous
networks needs interaction with surrounding environments. By
implementing the functionality which enables simulation of
surrounding environments, simulation of ubiquitous network
system can be executed while obtaining necessary information
from the simulated environments. In addition, the simulation
can even interact with real environments if the interface
between simulated and real environments. This is definitelyof
use for ubiquitous network simulation especially in the final
phase of their development.

IV. F IRST GENERATION TESTBED - STARBED

The most suitable methods for making experiments depend
on the phase of software development. Software simulation is
suitable for the beginning phase, and laboratory-level testbed
can be used for evaluating actual implementations just before
introducing it to the Internet.

Our motivation is to evaluate actual implementations on
the Internet-like environments to know the realistic behavior
of these implementations on the real Internet and to avoid
bad influences to critical services on the Internet. However,
the gap between the Internet and laboratory-level testbed
is very big, especially at points of scale and complexity.

Technologies which are not sufficiently evaluated may impede
critical services. We should avoid such extreme situations.

In order to solve this problem, we need a large-scale and
realistic testbed for evaluation. We implemented StarBED,a
large-scale practical network testbed based on actual nodes.

In this section, we describe StarBED and SpringOS which
is a support system to drive experiments on StarBED.

A. Architecture of StarBED

In StarBED facility, many number of nodes are located on
the same site, and all these resources are physically accessible.
So we can get all information about the experiment traffic
since all switches that connect experiment nodes are located
in the same site. The environment is dividable and could
be manipulated by several users. Figure 2 shows a space
division of resource allocation considering three independent
experiments, each set of nodes is completely independent from
the others.

experiment Cexperiment B

node

experiment A

facility

Fig. 2. Using space division of the facility

However, to build such environment, we need a variety
of equipments and installations, which make such kind of
projects quite difficult to achieve. To solve the difficultly
of building experiment topologies, the network will be built
beforehand based on fixed hardware connections and we build
a customized topology using virtual networks.

These networks connect about 700 actual PCs equipped in
StarBED, and enable to build large-scale experiment topolo-
gies. There are two networks, one is the management network
and the other is the experiment network. Figure 3 shows
this concept. By separating the management network from
the network dedicated to the experiments, we can guarantee
traffic separation and the precision of the experiments. Another
purpose of the management network is to allow configuring
the network interfaces in the experiment network. In this way,
the configuration for experiments can be made based on user-
defined IP addresses during the building of the experiment
topology.

Primergy

Intelligent Switch

Switch

 Nodes
Management

 Nodes
Experiment

 Network
Experiment

 Network
Management

Fig. 3. Conceptual topology of StarBED

We designed the StarBED clients to run several ten virtual
nodes using VMware [4]. When using virtual nodes, we should
consider where virtual machines can be used, sometimes
realism of experimental results becomes unacceptably low by
using virtual machines.

B. SpringOS

We designed SpringOS, a system that supports the users to
execute their experiments.

Using SpringOS, all what user has to perform is to pre-
paid an experiment configuration file. SpringOS will execute
experiments according to the configuration file; it will drive
experiments according to the following steps:

1. Loading the user configuration file
2. Nodes assignment to an experiment
3. Software settings of the experiment nodes
4. Building topology for the experiment
5. Execution of an experiment according to the scenario

The details of the design and behavior of SpringOS are
described inAutomatic Configuration and Execution of Inter-
net Experiments On An Actual Node-based Testbed[11], and
StarBED Project web site [2].

V. NEXT GENERATION TESTBED - STARBED2

In order to implement a testbed for ubiquitous networks
that satisfies the requirements mentioned in section II, we
are currently working on an implementation of StarBED2, a
testbed for ubiquitous networks based on StarBED, our first
generation testbed mentioned in the previous chapter. As the
first step of the hardware implementation, the number of nodes
on StarBED has been increased. As a result there are now
about 700 nodes on StarBED.

Generally, to emulate ubiquitous networks is a highly
computational-power-consuming task not only because of the
huge number of nodes each network has, but also the com-
plexity of their behavior. It is even more difficult to execute

emulations under real-time constraints so that emulated nodes
and real nodes can interact with each other. Thus we are about
to utilize StarBED as a basis of StarBED2 since StarBED’s
ability to emulate thousands of network nodes accomplishes
such a heavy task efficiently. The major aim of StarBED2
is to create an emulation environment in which various kind
of nodes, networks, and environments can be emulated under
real-time constraints cooperatively with real nodes so that it
can be widely used for prototyping, evaluation, testing of
ubiquitous networks in any point of development.

A. Structure of StarBED2

StarBED2 is being constructed on StarBED architecture as
its basis. On top of the StarBED portion, a multilevel emula-
tion layer, an instruction level emulation layer, a system call
level emulation layer, and a middleware level emulation layer
are being added. A layer is a sort of virtual machine within
which various kind of nodes with different architectures can
work together in a emulation. This framework of multilevel
emulation layer gives the flexibility of use in any phase of the
development of ubiquitous network.

From a physical point of view, StarBED2 is a large-scale
PC cluster; in each node the emulation layer is implemented
as can be seen from Figure 4.

Ubiquitous Network
Application

Ubiquitous Network
Application

Ubiquitous Network
Application

Ubiquitous Network
Middleware

Ubiquitous Network
Middleware

Ubiquitous Network
Protocol Stack

Middleware Level
Emulation

System Call Level
Emulation

Instruction Level
Emulation

Implemented by Users

Provided by StarBED2

Fig. 4. Physical structure of StarBED2

Obviously this physical architecture itself is not sufficient
for emulating ubiquitous networks. StarBED2 has a logical
architecture as depicted in Figure 5, which makes StarBED2
able to executing emulate ubiquitous networks.

• node space
The main idea of the logical architecture is a “space”
and “conduit” structure. In the structure, the elements of
ubiquitous networks such as nodes, networks, and envi-
ronments are described asspaces. Depending on what is
implemented in aspace, thespaceis classified into three
categories:node space, network space, andenvironment
space. The spacesinteract with each other throughcon-
duits, executing their own process autonomously. In each
spacea user-defined coordinate system which is specific
to thespaceis used. For example, a pair of IP addresses

Environment Space

Node Space Node Space

Network Space

Fig. 5. Logical structure of StarBED2

and port numbers may be used in anode space, space
coordinates innetwork spaceand environment space
respectively. Theconduit is a one-way communication
channel which is set up between twospaces. All what a
user of StarBED2 has to do for executing emulations is
to implement eachspaceand declareconduitsbetween
thosespaces. This structure is roughly equivalent to the
relationship between processes and Interprocess Com-
munication (IPC), but they differ in some senses. One
major difference is that aconduit works regardless of
the location of bothspaceswhich interact through the
conduit. Thespacescan be either on the same node or on
different nodes since StarBED2 is a cluster system, and
the emulation is done in distributed environment. Another
difference is their address architecture. The end-points of
IPC are bound to logical identifiers such as IP address and
port number etc. In contrast, the end-points ofconduit
can be bound to either physical coordinate of objects
etc., or logical identifiers according to implementation
of the spacesthe conduit is connecting. This is because
the addressing using physical identifiers is necessary to
realize the interaction between nodes and environments.

B. Space and Conduit Structure

In this section we explain how each component of a
ubiquitous network can be implemented asspacesand
conduits, taking a closer look at thespaceand conduit
structure.
In node space, the behavior of nodes of ubiquitous
network such as sensor nodes, appliance built-in nodes,
home gateways etc. is emulated. The emulation is done
in one of the multilevel emulation layer, instruction level
emulation layer, system call level emulation layer, or mid-
dleware level emulation layer, under real-time constraints.
The existence of this layer gives users the opportunity

to evaluate nodes in the early phase of its development.
For example, even if the hardware of the target node is
newly designed and the operating system to be used has
not yet ported on the target hardware, the node can still
be emulated in the high layer, system call emulation layer
or middleware emulation layer.
The system call level emulation layer converts calling
conventions and emulates the system calls of other oper-
ating systems. In practice, the target of emulation has to
be compiled and linked to the stub library of this layer
in advance.
The middleware level emulation layer provides the APIs
of ubiquitous networks to the emulation targets. By using
this layer, the target of emulation can be executed without
implementing any underlying protocol layers. In order to
execute an emulation in this layer, the target has to be
compiled and linked to the stub layer of this layer and
the system call level emulation layer stub library.
The communication between anode spaceand other
spaces, network spaceor environment space, is done
throughconduits.

• network space
In network space, network media of ubiquitous networks
such as IEEE802 family, Bluetooth [17], ZigBee [18] etc.
are emulated. The network media can be emulated either
in a statistical manner, in which the statistical model of
the network is used, or in a realistic manner, in which
signal propagation in the media is emulated. The ways of
emulation can be switched according to the proceeding
of the development. This means it is possible to use the
statistical emulation for early prototyping in the early
phase of the development, then switch to the realistic
emulation for more precise analysis afterward.

• environment space
In environment space, surrounding environments neces-
sary for emulation such as thermal field, electromagnetic
field, acoustic field etc. are emulated. The emulation of
environment can be done either in a statistically manner,
in which the statistical model of the environment is
used, or in a realistic manner, in which any physical
phenomenon in the environment is emulated.

The spacesmentioned above are implemented by the user
of StarBED2, and executed as a process on each StarBED
node autonomously, and interact with otherspacesvia conduits
when needed. Theconduitsare bound to a certain coordinate
in the source and destinationspaces. When a read request is
generated, theconduitmakes a read request to the destination
space, and sends the information obtained from the destination
space to the sourcespace. Write requests are processed
similarly.

What is required for implementing thespacesdoes not
differ significantly from the development of usual programs
except that StarBED2 API has to be used forconduit com-
munication and real-time execution. The implementation of
the spacebecomes a stand-alone binary after linking with
StarBED2 library. The stand-alone binaries can be launched

either manually or automatically by the emulation automating
mechanism of StarBED2.

C. Functionality Considerations

By implementing the functionalities mentioned above,
StarBED2 can be a testbed which satisfies the requirements
for ubiquitous network emulation mentioned in section II.

Multilevel emulation layer enables emulation of a variety
of ubiquitous network node platform and network media by
its flexibility to emulate plenty of ubiquitous network compo-
nents. The space and conduit structure provides a reasonably
abstracted model of ubiquitous network system components
which is valuable for setting up the emulation of ubiquitous
network systems with a huge number of components and
a complex topology. A combination of the about 700 PCs
in StarBED and the virtual machines executed on the PCs
can be the driving force of emulating a great number of
nodes, networks and surrounding environments. SpringOS
implemented as a part of StarBED supports dynamic changing
of the topology of ubiquitous networks.

By using these functionalities, StarBED2 will be extremely
useful for emulating whole ubiquitous network system, though
it is still challenging to meet all the requirements simultane-
ously.

VI. CONCLUSIONS

Ubiquitous and sensor networks are currently hot research
topics. They may be introduced in our daily life and connected
to the Internet in the near future. These networks are large and
complex, and it is difficult to predict their behavior. A lot of
technologies for these networks are published now and will
be made public in the future. Since the expectations for these
technology’s behavior are difficult to assess, it is also difficult
to make a testbed for that. Using software simulators, one
can only simulate well-known behaviors of technologies, and
the implementations for real environments cannot be used. In
order to evaluate implementations for these networks, testbeds
based on actual nodes are strongly needed. However, building
such testbeds is difficult because of the cost.

We have worked for years on StarBED, a large-scale net-
work testbed, to reduce the cost for experiments based on large
number of actual nodes. There are many nodes in StarBED just
for experiments, users can use these nodes with time and space
sharing. In StarBED, building topologies and driving scenarios
for experiments are executed automatically by SpringOS. As
a result of our effort, StarBED has been working and used
for lots of practical experiments which opened new views on
the design of network equipments. Our research goal is to
implement a testbed for ubiquitous networks, StarBED2, based
on StarBED. On top of StarBED, some components are added
so that StarBED2 can be used widely for estimating ubiquitous
networks.

In practice, emulation can be done with StarBED2 by
implementing nodes, networks, and surrounding environment
asspaces. They communicate with each other throughconduits
during the emulation process. This emulation is done with real-
time constraints so that our system can work cooperatively
with real components.

In this paper, we described the overall architecture of present
StarBED from both software and hardware points of view,
and how it is being expanded to StarBED2. Finally, we
presented the architecture adopted for StarBED2 in order to
implement a ubiquitous network emulator that meets specific
requirements. In this paper, no evaluated results can be shown
since StarBED2 is now in the design phase. But we have
confidence that StarBED2 become a testbed which satisfies
the requirements for ubiquitous network emulation mentioned
in the section II by implementing specific functionalities such
as PC clustering, experiment support system SpringOS, virtual
machines, multilevel emulation layer, and space and conduit
structure mentioned in the previous chapter.

REFERENCES

[1] The VINT Project: http://www.isi.edu/nsnam/vint/index.html
[2] The StarBED Project: http://www.starbed.org/
[3] National Institute of Information and Communications Technology:

http://www.nict.go.jp/
[4] VMware Inc.: http://www.vmware.com/
[5] L. Rizzo: Dummynet: a simple approach to the evaluation of network

protocols. ACM Computer Communication Review27 (1997) 31–41
[6] NIST Internetworking Technology Group: NIST Net network emulation

package, http://www-x.antd.nist.gov/nistnet/
[7] Intel Corporation: Preboot Execution Environment (PXE) Specification

Version 2.1, (1990)
[8] Takuji Iimura and Hiroaki Hazeyama and Youki Kadobayashi: Zoned

Federation of Game Servers: a Peer-to-Peer Approach to Scalable Multi-
player Online games, NetGames (2004)

[9] Eiichi Muramoto and Takahiro Yoneda and Atsushi Nakamura and
Makoto Misumi and Toshiyuki Miyachi and Yoichi Shinoda: Report on a
Method of Simulating Multicast Group Communication on the Internet,
Towards Peta-Bit Ultra Networks (2003)

[10] Brian White and Jay Lepreau and Leigh Stoller and RobertRicci and
Shashi Guruprasad and Mac Newbold and Mike Hibler and Chad Barb
and Abhijeet Joglekar: An Integrated Experimental Environment for
Distributed Systems and Networks. OSDI02 (2002) 255–270

[11] Toshiyuki Miyachi and Ken-ichi Chinen and Yoichi Shinoda: Auto-
matic Configuration and Execution of Internet Experiments On An
Actual Node-based Testbed. 1st International Conference on Testbeds
and Research Infrastructures for the Development of Networks and
Communities(Tridentcom) (2005) 274–282

[12] IEEE standard for Local and Metropolitan Area Networks: Virtual
Bridged Local Area Networks. (1998)

[13] T. Ylonen: SSH – Secure login connections over the internet. Proceed-
ings of the 6th Security Symposium (USENIX Association: Berkeley,
CA) (1996) 37

[14] Philip Levis, Nelson Lee, Matt Welsh], and David Culler: TOSSIM:
Accurate and Scalable Simulation of Entire TinyOS Applications. Pro-
ceedings of the First ACM Conference on Embedded Networked Sensor
Systems (SenSys 2003) (2003)

[15] Jonathan Polley, Dionysys Blazakis, Jonathan McGee, Dan Rusk, John
S. Baras: ATEMU: A Fine-grained Sensor Network Simulator Proceed-
ings of the First IEEE Communications Society Conference onSensor
and Ad Hoc Communications and Networks (SECON 2004) (2004)

[16] Priya Mahadevan, Adolfo Rodriguez, David Becker, AminVahdat:
MobiNet: A Scalable Emulation Infrastructure for Ad hoc andWire-
less Networks. Proceedings of the International Workshop on Wireless
Traffic Measurements and Modeling (WiTeMe 2005) (2005)

[17] Specification of Bluetooth. https://www.bluetooth.org/
[18] Specification of ZigBee. https://www.zigbee.org/

