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Abstract

This paper presents a method of extracting the
desired signal from a noise-added signal as a
model of acoustic source segregation. Using
physical constraints related to the four reg-
ularities proposed by Bregman, the proposed
method can solve the problem of segregat-
ing two acoustic sources. These physical con-
straints correspond to the regularities, which
we have translated from qualitative conditions
into quantitative conditions. Three simulations
were carried out using the following signals: (a)
noise-added AM complex tone, (b) mixed AM
complex tones, and (c) noisy synthetic vowel.
The performance of the proposed method has
been evaluated using two measures: precision,
that is, likely SNR, and spectrum distortion (S-
D). As results using the signals (a) and (b),
the proposed method can extract the desired
AM complex tone from noise-added AM com-
plex tone or mixed AM complex tones, in which
signal and noise exist in the same frequency re-
gion. In particular, the average of the reduced
SD is about 20 dB. Moreover, as the result us-
ing the signal (c), the proposed method can also
extract the speech signal from noisy speech.

1 Introduction

Recently, the term “Auditory Scene Analysis: ASA” has
become widely known due to Bregman’s book[Bregman,
1990]. ASA is understanding a real environment using
acoustic events. Although the real environment, that we
experience everyday, consists of speech, noise and reflec-
tion, simultaneously, it seems that the human auditory
system can solve the problem of ASA. But, in solving
the problem of ASA using acoustic signals received from
the same environment, a unique solution can not be de-
rived without constraints on acoustic sources and the
real environment.

Bregman reported that, for solving the problem of
ASA, the human auditory system uses four psychoacous-
tically heuristic regularities related to acoustic events:
(i) common onset and offset, (ii) gradualness of change,
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(iii) harmonicity, and (iv) changes taken in the acoustic
event[Bregman, 1993].

We think that, by translating these heuristic regulari-
ties into physical constraints and by using these physical
constraints, it is possible to solve the problem of compu-
tational auditory scene analysis. As a first step, if it is
possible to solve an acoustic source segregation problem,
where the sounds required by the listener are extracted
selectively while the other sounds are rejected, this solu-
tion can be used not only to construct a preprocessor for
a robust speech recognition system but also to simulate
cocktail party effects. And, it seems that the solution
can be a computational model of auditory phenomena
such as Co-modulation Masking Release (CMR).

On the one hand, there are two types of typical models
of auditory segregation using some of the four regulari-
ties, based on either bottom-up or top-down processes.
An example of the former type is Brown and Cooke’s
segregation model based on acoustic events[Brown, 1992;
Cooke, 1993]. And as for the later type, there are El-
lis” segregation model based on psychoacoustic grouping
rules[Ellis, 1994] and Nakatani et al’s stream segrega-
tion agents[Nakatani et al., 1994]. All these segregation
models use regularities (i) and (iii), and an amplitude
(or power) spectrum as the acoustic feature. Thus they
can not extract the desired signal from a noisy signal
completely when the signal and noise exist in the same
frequency region. And, if the power of background noise
increases, it seems that these proposed models can not
extract the desired signal with high precision.

In contrast, we have discussed the need for using not
only the amplitude spectrum but also the phase spec-
trum, for completely extracting the desired signal from
a noisy signal in which signal and noise exist in the same
frequency region[Unoki et al., 1997]. We have proposed
a method for solving the problem of segregating a sinu-
soidal signal from noise-added signal, using physical con-
straints related to regularities (ii) and (iv). As a result
of computer simulations, it was found that the proposed
model can segregate a sinusoidal signal from noise-added
signal. If the parameters of the proposed model are set
to the human auditory properties, it can be a computa-
tional model of Co-modulation Masking Release[Unoki
et al., 1997].
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Figure 1: Auditory segregation model.

In this paper, we present a method for extracting the
desired signal from noisy signal by using physical con-
straints related to regularities (i) — (iv), as an auditory
segregation model. In particular, we consider that the
problem of extracting the desired signal from the follow-
ing signals: (a) noise-added AM complex tone, (b) mixed
AM complex tones, and (c) noisy synthetic vowel.

2 Auditory segregation model

The auditory segregation model shown in Fig. 1 consist-
s of three parts: (a) auditory filterbank, (b) separation,
and (c) grouping. The auditory filterbank is construct-
ed using a gammatone filter as an “analyzing wavelet”.
The separation block uses physical constraints related to
heuristic regularities (ii) and (iv). The grouping block
uses physical constraints related to heuristic regularities
(i) and (iii), and signal reconstruction in the grouping
block is done with the inverse wavelet transform. In this
model, the separation block follows the formulation of
the problem of segregating two acoustic sources.

2.1 Formulation of the problem of
segregating two acoustic sources

In this paper, we define the problem of segregating two
acoustic sources as “the segregation of the mixed signal
into original signal components, where mixed signal is
composed of two signals generated by any two acous-
tic sources”. The problem of segregating two acoustic
sources is formulated as follows.

Firstly, we can observe only the signal f(¢):

f@) = 1) + f2(1), (1)

where f1(t) is the desired signal and f»(t) is a noise. The
observed signal f(t) is decomposed into its frequency
components by an auditory filterbank. Secondly, outputs
of the k-th channel, which correspond to fi(t) and fa(t),
are assumed to be

f1(t) = Ag(t) sin(wgt + 015 (t)) (2)
and
f2(t) : By (t) sin(wgt + 025 (t)), (3)

respectively. Since the output of the k-th channel X} (¢)
is represented by

X (t) = Sk (t) sin(wkt + ok (t)), (4)

where

Sk(t) = \/A2(t) + 24,(0) B (1) cos B () + BE(t)  (5)

and

or(t) = tan™" (

Ay, (t) sin 61y (t) + By, (t) sin Oap (t) )
A (t) cos b1 (t) + Bi(t) cosbai(t) )

then the amplitude envelopes of the two signals Ay(¢)
and Bj(t) can be determined by

_ Sk(t) sin(02x(t) — P (1))

Ar(®) Sin 04 (8)

(7)

and

Sk (t) sin(Pk(t) — 01k (t))
. : (8)
sin O, (¢)

respectively, where 0y (t) = 02 (t) — 015(t) and 0 (t) #

nm,n € Z. Thus, if the four parameters, Si(t), ¢x(t),

01(t), and Oax(t) are calculated, Ag(t) and By(t) can

be determined by the above equations. Finally, f1(¢)

and f>(t) can be reconstructed by grouping constraints.

fi(t) and fo(t) are the reconstructed fi(t) and fa(t),

respectively.

In this paper, we assume 601 (¢t) = 0 and 0y (¢t) = 625 (¢).
Moreover, we consider the problem of segregating two
acoustic sources in which the localized fi(t) is added to

fa(t).

2.2 Auditory filterbank

Firstly, we describe the wavelet transform and the in-
verse wavelet transform to design an auditory filterbank.
If ¢ € L?(R) satisfies the “admissibility” condition:

Dy = /00 de < 00, (9)

—_—d

By(t) =

where 1& is Fourier transform of v, then 9 is called a
“basic wavelet”. Relative to every basic wavelet 1), the
integral wavelet transform on L?(R) is defined by

Fa.b) = ﬁ / Z oL (#)dt, (10)

where a is the “scale parameter”, b is the “shift param-
eter”, and a,b € R with a # 0. In addition, under this
additional assumption, it follows that ’L/AJ is a continuous
function, so that finiteness of Dy in Eq. (9) implies
¥(0) = 0, or equivalently, 7 y(t)dt = 0.

If 9(t) is a basic wavelet, then the inverse wavelet
transform exist for all ¢ as follows:

r0 =5 [ [ Fene(T) %

Moreover, if we let 1(t) be a complex basic wavelet, then
the integral wavelet transform can be represented by

Fla,b) = |F(a, b)|e 2raF (@), (12)
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Figure 2: Impulse response and amplitude character-
istics of the gammatone filter (fo = 600 Hz, N = 4,
by = 22.99).

where _
|f(a,b)| is the amplitude spectrum and arg(f(a,b)) is
the phase spectrum.

Secondly, to construct an auditory filterbank, we use
the gammatone filter as an analyzing wavelet. The
gammatone filter is an auditory filter designed by
Patterson[Patterson et al., 1994], and simulates the re-
sponse of the basilar membrane. The impulse response
of the gammatone filter is given by

gt(t) = AtN=1e2mbrt cos(2m fot),

where AtV —1e=27bst ig the amplitude term represented
by Gamma distribution and fy is the center frequency.
In addition, amplitude characteristics of the gammatone
filter are represented approximately by
. -N
by

where GT(f) is the Fourier transform of gt(t). The
characteristics of the gammatone filter are shown in Fig.
2. To determine phase information, we extend the im-
pulse response of the gammatone filter, which is a basic
wavelet. This basic wavelet is represented by

’(/J(t) — AtN716j2ﬂf0t727rbft’ (15)

using the Hilbert transform. This analyzing wavelet sat-
isfies the admissibility condition approximately, because
GT(0) =~ 0.

Finally, an auditory filterbank is designed with a cen-
ter frequency fy of 600 Hz, a bandpassed region from 60
Hz to 6000 Hz, and a number of filters K of 128. This
auditory filterbank is implemented on computer, using a
discrete wavelet transform with the following condition-
s: sampling frequency fs = 20 kHz, the scale parameter
a =a”,—K/2 < p < K/2,a = 10¥%, and the shift
parameter b = q/ fs, where p,q € Z. Frequency charac-
teristics of the wavelet filterbank are shown in Fig. 3.

t>0, (13)

0< f<oo, (14)
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Figure 3: Frequency characteristics of the wavelet filter-
bank.

3 Calculation of the four physical
parameters

3.1 Calculation of Si(t) and ¢(t)

The amplitude envelope Si(t) and the output phase
¢ (t) can be calculated using the following lemma.

Lemma 1 The amplitude envelope Sk (t) is calculated by
Sk(t) = |f(a* % 1)), (16)

where | f(a,b)| is the amplitude spectrum defined by the
complex wavelet transform. The output phase ¢p(t) is
calculated by

o) = | (% arg (o™= .1)) —Wk) a, (1)

where arg(f(a,b)) is the phase spectrum defined by the
complex wavelet transform.

Proof. See appendix in [Unoki et al., 1997]. a

3.2 Calculation of 0(t)

In this paper, we assume 60 (t) = 0 and 6, (t) = 025 (¢).
Therefore, we must know the input phase 0(t). The
input phase 0 (t) can be determined by applying three
physical constraints derived from regularities(ii) and (iv)
as follows.

Firstly, we use regularity (ii). This regularity means
that “a single sound tends to change its properties s-
moothly and slowly (gradualness of change)”. We con-
sider this regularity as the following physical constraint,
to apply it to the amplitude envelope Ag(t).

Physical constraint 1 Temporal differentiation of the
amplitude envelope Ay (t) must be represented by Rith-
order differentiable polynomial Cy r(t) as follows:

) _ 4 ni) (18)

|



A general solution of the input phase 6 (t) is deter-
mined by solving the linear differential equation obtained
by applying Physical constraint 1 to Eq. (7).

Lemma 2 A general solution of the input phase 0y(t) is
determined by

01 (t) = arctan ( S (t) sin i (1) ) , (19)

Sk(t) cos i (t) + Cr(t)

where Ci(t) = — [ Cy,r(t)dt + Cro. Ci(t) is called the
“unknown function”. O

Therefore, if C(t) is determined, then 6 (t) is unique-
ly determined by Eq. (19). In this paper, we estimate
C(t) using the Kalman filter.

Estimation of C(t) using the Kalman filter
We formulate the problem of estimating Cj(¢) by using
the Kalman filter.

A complex representation of the output of the kth
channel Xj(t) represented by Eq. (4) is the wavelet
transform given by Eq. (10) as follows.

Xp(t) = Sp(t)ed@rtter®)

= f(a,b), a=aF"T b=t,, (20)

where t,, = m/fs,m = 0,1,---, M. From Eq. (1), this
is expressed as the sum of the wavelet transforms of f; (¢)
and fa(t). Hence,

F* % t,) = fu(@® % b)) + a0 % 1) (21)
where
FLQ ™ ) = Ap(t,)eFertmtox(®) (22)
and
fz(akf?tm) = By (ty,)elrtm+02(t) (23)

On the other hand, from Egs. (18) and (19), we obtain
the following relation.

Cu(t) = —Ax(2). (24)

Suppose that a displacement of Cy(¢) in discrete time ¢,
is represented by

Cr(tms1) = Ck(tm) ACK + wpn, (25)

where

Ck(tm) - Ck(tmfl)
Clc (tm) - fs

That is, Ck(tm+1) is represented by Cj(ty,) times ACY,

and represented-error wy, follows a white Gaussian prob-

ability process with average 0 and variance o,.

In this paper, the problem is to estimate unknown
function C(t) from the observed information Xj ().

It is required to represent probability system com-
posed of state equation determined by Eq. (21) and
the observation equation, to apply the Kalman filter
to the estimation problem. If the observed signal is

ym = f(aF~% t,,), state variable is x,, = —C(t), ob-
served noise is vy, = fo(aF~% t,), and system noise is

AC, =1+ (26)

+ Y

Figure 4: Basic system of the Kalman filter.
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Figure 5: Algorithm for the Kalman filter. “EST.” and
“PRE.” denote “estimation” and “prediction”, respec-
tively.

Wi, = Wy, then, Egs. (25) and (21) can be represented
by complex probability system as follows.

(state) (27)
(observation), (28)

Xmi1 = FpxXpm + Grwin

Ym = HnXm +vin

where state transition matrix Fp, = AC}, observation

matrix H,, = e/“**=_ and driving matrix G,, = —1.

These equations are called the “basic system” and are

shown in Fig. 4. A complex Kalman filter is represented

by the following equations, and is applied to the estima-
tion problem shown in Fig. 5.

1. Filtering equation
Ximjm = Xmjm—1 + Km (¥m — HnXpjm—1) (29
Xmtiim = FmXmim (30)
2. Kalman gain

immf H*T
K, = ————n (31)
Hmzm\m—lH;fnT + 2vm

3. Covariance equation for the estimated-error
2m|m = 2m|mfl - KmHmim\mfl (32)
Sitim = EnZmmFil + G2y, GiT (33)

Initial values of parameters are as follows: Xo_; = 0,
20\—1 = Sk(to), f]wm =0.01, and f]vm is the covariance
of fo(a*= % t,,). We remark that 3, is given by the
variance of X (ty,) for the duration in which only f5(¢)

exists.
In this manner, the minimum value of the estimation

Ci(t) and the estimated-error Py (t) are determined by
ék(t) = _|§(m\m| (34)



and
Plc(t) = ‘2m|m|' (35)

Although a unique solution for 6y (t) is obtained with the
minimum value of the estimated Cy(t), Ax(t) obtained
by the estimated 6 (t) does not necessarily satisfy this
“smoothness” of Ag(t). So, we define the smoothness of
A (t) using the following physical constraint.

Definition of the smoothness using spline
interpolation

Suppose that Ak(t) is the amplitude envelope of f1(¢
given by any unknown function Cy(t), and t1,t9,---,¢;
are within the opened-duration (t4,t), where t, < t1 <
<o < t; < tp. In addition, suppose that /Al;m = Ak(ti)
is the value of the amplitude envelope at time ¢;. To de-
termine the smoothest interpolation function Ag(t;) =
flk,i,i =1,2,---,I means that we determine the inter-
polation function such that integral o = ttab [A,(:) ()]%dt
is the smallest, where Ay (t) is defined in the closed-
duration [t4, tp] and is rth-order differentiable.

We consider the smoothness in regularity (ii) as the
following physical constraint, to define the smoothness
of the amplitude envelope Ag(t).

Physical constraint 2 Suppose that the amplitude en-
velope A (t) is defined in the closed-duration [tq,tp] and
satisfies Physical constraint 1. If Ag(t) is as smooth
as possible, then the following integral must be mini-
mized:

113
az/[%me% —> min. (36)
t

a

O

According to Physical constraint 2, the smoothest
of the interpolation function is the (2R 4 1)th-order s-
pline function. This spline function exists uniquely.

By considering the relationship between A (t) and
Ci(t) from Egs. (7) and (19), we can interpret Phys-
ical constraint 2 in order to determine Cj(¢), which
is interpolated by using the spline function within the
estimated-error region:

ék(t) — Pk(t) < Ck(t) < ék(t) + Pk(t). (37)

Therefore, by calculating the candidates of Cj(t) inter-
polated using the spline function within the estimated
error, and by calculating a correct solution from the
candidates of Cy(t), the smoothest Ag(¢) can be deter-
mined uniquely. For example, Ci(t) as interpolated by
the spline interpolation function in time ¢; is shown in
Fig. 6. In this figure, each candidate of Cy(t) is de-
termined by fixing Ck(t1),- -, Ck(ti—1) for t1,---,t;—1,
and by interpolating Cy(t) for changes in Cj(t;), where
Cr(ti) — Pr(ti) < Cr(ti) < Ci(ts) + Pr(ti).

In this paper, we use the cubic spline function (R = 1).
The interpolated duration is At = 15/ fo.

Crlt) varied \

Candidate \ ...... : Cy (t)+Py (t;)
{ , Ck(ti)

S5 Cl(t)Pilt)

ta ty to t

tig t ty

Figure 6: Candidates for Cy(t) interpolated by the spline
function

Determination of Cjy(t) using correlation
between the amplitude envelopes

Finally, we use regularity (iv) to narrow down the candi-
dates for Cy(t), which is interpolated by spline function.
Regularity (iv) means that “many changes take place
in an acoustic event that affect all the components of
the resulting sound in the same way and at the same
time” [Bregman, 1993]. Therefore, we consider this reg-
ularity as the following physical constraint.

Physical constraint 3 The normalized amplitude en-
velope of the output of the kth channel must approximate
that of Lth channel as follows:

Ak(t) ~ Al(t)
[Ae@®I A’

ke # 0. (38)

|
To select an optimal function Cf(t) when the correla-
tion between Ay (t) and Ay(t) becomes maximum at any
C'k(t) within the estimated-error, we interpret Physical
constraint 3 as follows:
) max w, (39)
Cr—Pr<Crp<Cr+Fx ||Ak||”AkH

where Ay (t) is the amplitude envelope given by inter-
polated Ci(t), and Ag(t) is the amplitude envelope in

other channel. We explain the amplitude envelope Ay (t)
in the next section.

Hence, 0 (t) is uniquely determined using the opti-
mized Cy(t) from Eq. (19).

4 Segregation and Grouping

In this section, we describe the grouping constraints.
The aim of grouping constraints is to extract the desired
signal from the noise-added signal using regularities (i)
and (iii) proposed by Bregman. Therefore, the grouping
block takes a solution for the problem of segregating t-
wo acoustic sources and applies to Xj(¢), in which two



acoustic signals exist in the same time region. In other
words, it applies the solution to Xj(¢), if either of the
two physical constraints are satisfied as follows.

As a first regularity, we use regularity (iii). This reg-
ularity means that “when a body vibrates with a repet-
itive period, its vibrations give rise to an acoustic pat-
tern in which the frequency components are multiples of
a common fundamental”. In order to use regularity (iii),
we consider it as the following physical constraint.

Physical constraint 4 Suppose that Fy is the funda-
mental frequency, and Ng, is the order of harmonics. If
the harmonic component exists in X,(t), then the chan-
nel number { must satisfy

K 1 - F{

= log(n - Fo/ fo) +1, n=1,2,---,Np, (40)
2 log o

where a is the scale parameter. O

As a second regularity, we use regularity (i). This
regularity means that “unrelated sounds seldom start or
stop at exactly the same time”. Therefore, we consider
this regularity as the following physical constraint.

Physical constraint 5 Suppose that Ts and T are on-
set and offset of f1(t), which is generated by one acous-
tic source. If an acoustic event obtained by a channel
is component of fi(t), then onset Ty on and offset Ti of
determined for the same channel must satisfy

|TS - Tk7on| S 50 ms (41)

and
|TE - T]C’Oﬂ‘| S 100 ms. (42)
O

In this paper, onset Tj, o, and offset Ty, of in Xy (¢) are
determined as follows:

1. Onset T} on is determined by the nearest maximum

point of |d¢’°(t) | (within 25 ms) to the maximum

point of |ds’°(t |

2. Offset T}, of is determined by the nearest maximum

point of |d¢’°(t | (within 25 ms) to the minimum
dSk(t |

point of |

In addition, onset Ts and offset Tg are obtained by de-
termining Ty on and T} og of the channel corresponding
to the fundamental frequency Fj.

Moreover, the amplitude envelope A (t) in Physical
constraint 3, is determined by

2N 1 /Alg(t)
Ap(t) = — S~ 248 4
M= N 2 T )

where L is the set of ¢ satisfying Eq. (40).

The algorithm for solving the problem of segregating
two acoustic sources using physical constraints related
to the four regularities is shown in Fig. 7.

decompose f(t) into its frequency components using the
wavelet filterbank (wavelet transform) as Eq. (4);
for k:=1to K do
01k (t) =0 and gk(t) = sz(t);
determine Sk(t) and ¢x(t) from Lemma 1;
determine onset T} on and offset Ty of;
the segregated duration is Tk,on <t < Tk off;
if Physical constraint 4 or 5 is satisfied then
estimate Cj(t) using the Kalman filter;
determine the interpolated duration;
let T be the number of the interpolated samples;
fori=1to I do
determine the candidates for Cy(t), which
mterpolated by the spline function within

Ci(ti) = Pu(ta) < Ci(t:) < Crlta) + Pe(ti);
determine 0y (t) from Eq. (19);
determine Ag(t) from Eq. (7);
determine Ag(t) from Eq. (43);
determine Corr(A(t), Ax(t)) from Eq. (39);
end
determine Cy(t) when Corr(Ag(t), Ax(t))
becomes a maximum within the estimated
-erTor;

determine 0y (t) from Eq. (19);
else

set Ak(t) =0, Bk(t) = Sk(t) and ek(t) = qf)k(t);
end

determine Ag(t) and Bg(t) from Egs. (7) and (8);
determine each frequency components of f1(t)
and fa(t) from Eqgs. (2) and (3);
end
reconstruct fi(t) and f2(t) using the wavelet filterbank
(inverse wavelet transform) from Eqs. (7) and (8);

Figure 7: Segregation algorithm

5 Simulations

We have carried out three simulations on segregating
two-acoustic sources using noise-added signal f(t), to
show that the proposed method can extract the desired
signal fi(t) from it. These simulations are composed as
follows:

1. Extracting an AM complex tone from noise-added
AM complex tone.

2. Extracting one AM complex tone from mixed AM
complex tones.

3. Extracting a speech signal from noisy speech.

We use two types of measures to evaluate the perfor-
mance of segregation using the proposed method.

One is the power ratio in terms of the amplitude enve-
lope Ag(t), i.e., likely SNR. The aim of using this mea-
sure is to evaluate the segregation in terms of the ampli-
tude envelope where signal and noise exist in the same

frequency region. This measure is called “Precision”,
and is defined by

[ A2 (1)t
S (Ar(t) — Ag(t))2dt

Precision(k) := 101log,, (44)
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Figure 8: AM complex tone f1(t).
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Figure 9: Mixed signals f(t).

where A (t) is the amplitude envelope of original signal
f1(t) and Ag(t) is the amplitude envelope of the segre-
gated signal fi (t).

The other is the spectrum distortion (SD). The aim
of using this measure is to evaluate the extraction of a

desired signal fi(t) from noise-added signal f(t). This
measure is defined by

W N 2
9 (201og10 f““”) . @)

w F(w)

SD :=

where Fy(w) and F;(w) are the amplitude spectrum of

fi(t) and fi(t), respectively. Moreover, frame length is
51.2 ms, frame shift is 25.6 ms, W is analyzable band-
width of filterbank(about 6 kHz), and the window func-
tion is Hamming.

Reduced SD of f1(¢) is the SD difference between f(t)
and fi(t).
5.1 Simulation 1

This simulation assumes that f;(¢) is an AM complex
tone as shown in Fig. 8, where Fy = 200 Hz, N, = 10,
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Figure 10: SD for fi(t) and the reduced SD of fi(t).

and whose amplitude envelope is sinusoidal (10 Hz), and
f2(t) is a bandpassed random noise, where bandwidth of
about 6 kHz. Seven types of f(t) are used as simulation
stimuli, where the SNRs of f(t) are from —10 to 20 dB
in 5-dB steps. Mixed signals in cases of SNR= 0 dB and
SNR= 20 dB are plotted in Fig. 9.

The simulations were carried out using the seven
mixed signals. The average SDs of f1(t) and f(¢), and
the mean of the reduced SD of fi(¢) are shown in Fig.
10. Hence, it is possible to reduce the SD by about
20 dB as noise reduction, using the proposed method.
For example, when the SNR of f(¢) is 20 dB, the pro-
posed method can segregate Ay (t) with a high precision
as shown in Fig. 11, and can extract the fi(¢) shown
in Fig. 12 from the f(¢) as shown in Fig. 9. Moreover,
when the SNR of f(¢) is 0 dB, the proposed method can
also segregate Ay (t) as shown in Fig. 13, and can extract
the f1(t) shown in Fig. 14 from the f(t) as shown in Fig.
9. Hence, the proposed model can extract the amplitude
information of signal f1(¢) from a noise-added signal f(¢)
with a high precision in which signal and noise exist in
the same frequency region.

5.2 Simulation 2

This simulation assumes that f;(¢) is an AM complex
tone as the same as Fig. 8 and f>(¢t) is another AM
complex tone as shown in Fig. 15, where Fy = 300 Hz,
Np, = 10, and whose amplitude envelope is sinusoidal
(15 Hz). Therefore, harmonics of f1(¢) and f>(¢) in the
multiple of 600 Hz, for example, third harmonic of f(¢)
and second harmonic of f>(¢), exist in the same frequen-
cy region. Seven types of f(t) are used as simulation
stimuli, where the SNRs of f(¢t) are from —10 to 20 dB
in 5-dB steps. Mixed signal in case of SNR= 10 dB is
plotted in Fig. 16.

The simulations were carried out using the seven
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Figure 12: Extraction property for fi(t) (SNR= 20 dB).

mixed signals. The average SDs of fi(t) and f(¢) , and
the mean of the reduced SD of f;(¢) are shown in Fig.
17. Hence, it is possible to reduce the SD by about
20 dB as noise reduction, using the proposed method.
For example, when the SNR of f(¢) is 10 dB, the pro-
posed method can segregate Ay (t) with a high precision
as shown in Fig. 18, and can extract the f(t) shown in
Fig. 19 from the f(¢) as shown in Fig. 16. Hence, just
as the result of previous simulations, the proposed mod-
el can also extract the amplitude information of signal
fi(t) from a noise-added signal f(¢) with a high preci-
sion in which two AM complex tones exist in the same
frequency region.

5.3 Simulation 3

This simulation assumes that f1(t) is a synthetic vowel
as shown in Fig. 20, where Fy = 125 Hz, Nf, = 40, and
it is a vowel /a/ synthesized by the LMA, and f5(¢) is a
bandpassed random noise, where bandwidth of about 6
kHz. Three types of f(t) are used as simulation stimuli,
where the SNRs of f(t) are from 0 to 20 dB in 10-dB
steps. Mixed signal in case of SNR= 10 dB is plotted in
Fig. 21.

The simulations were carried out using the three mixed
signals. The average SDs of f1(t) and f(t), and the mean
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Figure 13: Precision for Ay (t) (SNR= 0 dB).
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Figure 14: Extraction property for fi(t) (SNR= 0 dB).

of the reduced SD of f1(t) are shown in Fig. 22. Hence,
it is possible to reduce the SD by about 15 dB as noise re-
duction, using the proposed method. For example, when
the SNR of f(t) is 10 dB, the proposed method can seg-
regate Ay (t) with a high precision as shown in Fig. 23,
and can extract the fi(t) shown in Fig. 24 from the
f(t) as shown in Fig. 21. Therefore, the proposed mod-
el can also extract the amplitude information of speech
fi(t) from a noisy speech f(¢) with a high precision in
which speech and noise exist in the same frequency re-
gion. Hence, this method can be applied in case where
a speech signal is to be extracted from noisy speech.

6 Conclusion

In this paper, we proposed a method of extracting the
desired signal from a noise-added signal, using physical
constraints related to the four regularities proposed by
Bregman, and by solving the problem of segregating two
acoustic sources. We have carried out three simulation-
s on segregating two-acoustic sources using noise-added
signal f(t), to show that the proposed method can ex-
tract the desired signal f1(¢) from it. These simulations
are:

1. Extracting an AM complex tone from noise-added
AM complex tone.



2. Extracting one AM complex tone from mixed AM
complex tones.

3. Extracting a speech signal from noisy speech.

As the results of simulations 1 and 2, the proposed
method can extract the AM complex tone from not on-
ly a noise-added AM complex tone but also mixed AM
complex tones, in which signal and noise exist in the
same frequency region, with high precision. In particu-
lar, it is possible to reduce the SD by about 20 dB as
noise reduction, using the proposed method. Moreover,
as the result of simulation 3, the proposed method can
also extract the speech signal from noisy speech.

Future work includes as follows: (1) to determine the
input phases 6y1(t) and 63x(t), and (2) to evolve the
grouping constraints for the deviation of Fy. If the above
subjects are cleared, then the proposed model can be
used not only to extend the problems of extracting the
desired FM tone from noise-added FM tone and the de-
sired AM-FM tone from noise-added AM-FM tone, but
also to extend problems of extracting the desired speech
signal from noisy signal in a real environment, such as
cocktail party effects.
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Figure 21:

Mixed signal f(t).
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