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Abstract

This paper proposes a new method of signal extraction from noise-added signal, addressing
on the problem of segregating two acoustic sources as a model of acoustic source segrega-
tion. This method models some constraints of auditory scene analysis (ASA) and makes
it possible to segregate two acoustic sources using the amplitude envelope and the phase
deviation (input and output phase) obtained from the output of a wavelet filterbank. Using
these three physical clues, the amplitude envelope and the output phase are determined;
then, the input phase is determined using the physical constraints translated from heuris-
tic regularities, changes in an acoustic event and gradualness of change, as proposed by
Bregman. As an example of segregation using the proposed method, we seek to provide a
solution for the problem of segregating two acoustic sources in which a sinusoidal signals
added to a bandpassed noise. In particular, if the parameters of the proposed model are
set to the human auditory properties, it can be a computational model of co-modulation
masking release, which makes extraction of sinusoidal signals when such signals are added
to AM bandpassed noise simpler while making the extraction of sinusoidal signals difficult
when such signals are added to bandpassed random noise.

Keyword

auditory scene analysis, two acoustic sources segregation, co-modulation masking release,
gammatone filter wavelet filterbank
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1 Introduction

Developments in recent years have caused the auditory system to be considered an active
scene analysis system stimulating the study of acoustic source segregation based on auditory
scene analysis (ASA) [1, 2]. If it becomes possible to solve the problem of acoustic source
segregation, not only will it become possible to extract sounds required by the listener while
rejecting others, but could find application in a robust speech recognition system [4]. We
feel that constructing a computational theory of audition in an analogy to a computational
theory of vision proposed by Marr [5] will require time complete; however, we feel that
modeling based on ASA suggests a new approach in the construction of a computational
theory of audition [6, 7, 8] since ASA shows a direction for constructing a computational
theory.

Bregman reported that, for solving the problem of ASA in understanding an environment
through acoustic events, the human auditory system uses four psychoacoustically heuristic
regularities related to acoustic events[2, 3:

(1) common onset and offset,

)
(2) gradualness of change,

(3) harmonicity,

(4) changes in an acoustic event.

There already exists ASA-based segregation models utilizing these four regularities: Brown
and Cooke’s segregation model based on acoustic events [9, 10, 11], Ellis’s segregation
model based on psychoacoustic grouping rules [12], and Nakatani et al.’s segregation model
implementing a multi-agent system [13, 14]. Another model is a computational model
of quantitative relationships between multiple features on the spectrogram and auditory
segregation for auditory segregation of two frequency components, as proposed by Kashino
et al.[15, ?]. All these computational segregation models use regularities (1) and (3), as
well as the amplitude or power spectrum as the acoustic feature. Because of this, they
cannot extract completely the signal from a noise-added signal when signal and noise exist
in the same frequency region.

We stress the need for considering not only the amplitude spectrum but also the phase
spectrum, when attempting to extract completely the signal from a noise-added signal
in which both exist in the same frequency region [17]; based on this stance, we seek to
solve the problem of segregating two acoustic sources  basic problem of acoustic source
segregation using regularities (2) and (4) as proposed by Bregman [18, 24].

This paper proposes a method of signal extraction from noise-added signal as a solution
for the problem of segregating two acoustic sources. This method uses amplitude and
phase spectra calculated by the wavelet transform from noise-added signal; it also shows
that if the parameters of the proposed model are set to the human auditory properties, the
proposed model can be a computational model of co-modulation masking release (CMR)
[19].

The paper is organized as follows: Section 2 illustrates the proposed model and then
formulates the problem of segregating two acoustic sources; Section 3 shows the design of
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the wavelet filterbank and its characteristics; Section 4 shows calculation of the physical
parameters and segregation algorithm; Section 5 carries out computer simulations for seg-
regating two acoustic sources to show advantages of the proposed method; Section 6 shows
that the proposed model can be a computational model of co-modulation masking release
if the model parameters are set to the human auditory properties; Section 7 contains our
conclusions.

2 Formulation of the problem of segregating two a-
coustic sources

In this paper, the problem of segregating two acoustic sources is defined as “the segregation
of original signal components from a noise-added signal, where mixed signal is composed
of two signals generated by two acoustic sources.”

This problem is formulated as follows.

Firstly, we can observe only the signal f(¢):

f() = fu(t) + fa(t), (1)

where fi(t) and f»(t) are the original acoustic signals. The observed signal is decomposed
into its frequency components by an auditory filterbank as shown in Fig. 1. Secondly,
outputs of the k-th channel, which correspond to fi(t) and f>(t), are assumed to be

f1(t) + Ag(t) sin(wit + 01x(t)) (2)
and

fa(t) : Bi(t) sin(wyt + O (1)), (3)
respectively. Here, wy is a center frequency of the auditory filter and 0y, (t) and 6o (t) are

input phases of fi(t) and fo(t), respectively. Since the output of the k-th channel Xj(t) is
the sum of Eqgs. (2) and (3), then it is represented by

Xi(t) = Sk(t) sin(wgt + ¢r(t)). (4)
Here,
Sk(t)
= \JAL(t) + 2A4(8) Bi(t) cos 6(1) + BR(1) (5)
and
i (1)
= arctan <2€k{§t)) ii%lfk((tt)) ig;((?) S;ls@(jf,f (?) ) (6)

where 0;(t) = 0o, (t) — 011(t) and Ox(t) # nm,n € Z. Since the amplitude envelope Sk (t)
and the input phase are observable and if the input phases 01 (t) and 02 (t) are determined,
the amplitude envelopes Ay (t) and By(t) can be determined by

_ St sin(0a(t) — &u(t))
sin Gk(t)

Ax(t) (7)
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and .
Bult) - Sk(t) 81n<¢k(t) Hlk(t))’ (8)
sin Oy (t)
respectively. Finally, for each auditory filter, determining of Ay(t) and By(t), fi(t) and
f2(t) are reconstructed from Eqs. (2) and (3) synthesizing each frequency components.
Here, fi1(t) and fo(t) are the reconstructed fi(t) and fy(t), respectively.

In this paper, the analysis synthesis system (filterbank) as shown in Fig. 1 is constructed
using the wavelet transform. We assume that 01(t) = 0, 0,(t) = 02x(t), and that fi(t) is
an amplitude modulation signal. We also assume that a center frequency of analytic filter
matches a center frequency of fi(t), and that f(¢) is a bandpassed random noise which
the center frequency is the same as fi(t). We will also consider the problem of segregating
two acoustic sources in which the localized fi(t) is added to fa(t).

3 Wavelet filterbank with the gammatone filter

3.1 Definition of the wavelet transform

Firstly, to design a wavelet filterbank, the wavelet transform and the inverse wavelet trans-
form are summarized as follows.
The integral wavelet transform for f(¢) is defined by

fa == [ g0 o (50 )

where a is the “scale parameter,” b is the “shift parameter,” and 1) is the conjugate of
1. The integral basis function is 1(t) scale-transformed by the parameter a and is shifted
by the parameter b. The selection of 1 (t) allows much mathematically freedom; howev-
er, in general, ¥(t) is determined to be an integrable function satisfied by the following
admissibility condition [20]:

0 | 2

Dy := / () dw < 0 (10)
—o  |w]

where 1/3(@0) is the Fourier transform of 1. If the above equation is satisfied, v is called a

“basic wavelet,” and the inverse transform exists uniquely as follows[20]:

0= [ e () 5 an

If % is absolutely integrable function, the admissibility condition implies zﬂ( 0) = 0.

If the basic wavelet is defined on a complex plane, it is possible that the wavelet transform
is represented by the amplitude spectrum |f(a,b)| and the phase spectrum arg(f(a,b)) as
follows [21]:

fla,b) = | f(a, b)|ed et @), (12)

To construct an auditory filterbank simulating the auditory system, we selected as a
basic wavelet the gammatone filter to simulate the response of the basilar membrane.



Denshi Joho Tsushin Gakkai Ronbunshi, Vol.J80-A, No.3, 1997, pp.444-453. 6

3.2 Characteristic of the gammatone filter

The gammatone filter is an auditory filter designed by Patterson[22], and is known to sim-
ulate well the response of the basilar membrane. The impulse response of the gammatone
filter is defined by

gt(t) = AtN"tem ¥ st cos(2m fot), t >0, (13)

where AtN~le=2st is the amplitude term represented by the Gamma distribution and fj is
the center frequency. The amplitude characteristics of the gammatone filter are represented,
approximately, by
. -N
GT(f)le](fbiﬁ])} L 0<f<oo, (14)
f

where GT'(f) is the Fourier transform of gt(¢) and represents bandpass filtering with a center
frequency of fy. Characteristics of impulse response and amplitude of the gammatone filter
are shown in Fig. 2. Since it is clear from this figure that GT'(f) ~ 0, the gammatone filter
satisfies approximately the admissibility condition, meaning it can be used sufficiently as
the basic wavelet.

3.3 Wavelet filterbank

To represent the wavelet transform as Eq. (12), we will redesign the gammatone filter by
the Hilbert transform. As a results, basic wavelet becomes

Q/J(t) — AtN—lejQﬂ'fot—Qﬂbft’ (15)

wavelet filterbank is designed with a center frequency fy of 600 Hz, a bandpassed region
from 60 Hz to 6000 Hz, and a number of filters K of 128. For convenience, we have
used the integral (continuous) wavelet transform; however, when the wavelet filterbank is
implemented on a computer, we will use a discrete wavelet transform with the following
conditions[18]: sampling frequency f; = 20 kHz, the scale parameter a = o, —% <p<
%, a = 105 and the shift parameter b = ¢/ f,, where p,q € Z. Frequency characteristics
of the wavelet filterbank are shown in Fig. 3. Amplitude characteristics of this filterbank
overlap completely with the bandpassed region as shown in Fig. 3 while ERB (Equivalent

Rectangular Bandwidth) of the filters are do not [18].

4 Calculation of physical parameters

4.1 Calculation of amplitude envelope Si(t) and output phase
o1 (1)

The amplitude envelope Si(t) and the output phase ¢(t) can be calculated using the
following lemma.

[Lemmal] The amplitude envelope Sk(t) is calculated by

Si(t) = | f(* %, 1)), (16)
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where |f(a, )] is the amplitude spectrum defined by the complex wavelet transform.
The output phase ¢x(t) is calculated by

o) = | (% arg (F(0F%,1)) - wk) it (1)

where arg(f(a,b)) is the phase spectrum defined by the complex wavelet transform.

Proof. See Appendix 1. O

4.2 Calculation of input phase 6;(t)

Input phase 0, (t) can be determined by applying three physical constraints: (i) gradualness
of change, (ii) continuity (temporal proximity), and (iii) changes in an acoustic event. In
particular, constraints (i) and (iii) are regularity (2) and (4) proposed by Bregman.

We will first apply regularity (i). This regularity states that “a single sound tends to
change its properties smoothly and slowly (gradualness of change)”[2]. We will consider
this in the following physical constraint.

[Constraint1] (gradualness change) Temporal differentiation of the amplitude enve-
lope Aj(t) must be represented by Rth-order differentiable polynomial Cy (1) as

follows:
dAg(t)

dt

= Cy.r(t). (18)
O

Applying Physical constraint 1 into Eq. (7), a linear differential equation is obtained as
follows: ) .
P, ) QO = Cunlt)
P(t) P(t) ’

where P(t) = Si(t)singi(t), Q(t) = Sk(t) cos ¢x(t), y(t) = cot Ox(t). Ox(t) can be deter-
mined by solving the linear differential equation (19).

y'(t) + (19)

[Lemma?2]| By solving the linear differential equation, a general solution of the input phase
0k (t) is determined by

Hk(t)arctan< Si(t) sin d(1) ) (20)

Sk(t) cos gx(t) + Ci(2)
where Cy(t) = — [ Cy r(t)dt + Ci is called the “unknown function.” O

If Ck(t) is determined, then 60(t) is uniquely determined by the above equation. Al-
though it is possible to estimate the coefficients Cy ,,7 = 0,1,---, R by considering as an
optimization problem, we will assume, in order to reduce the computational costs that in
small segment At, Cy g(t) = Cro. As this point, Eq. (18) is equivalent to dA(t)/dt = 0,
and amplitude envelope Ag(t) does not fluctuate in small segment At.
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Next, we will use regularity (ii) to segregate each small segment At. Regularity (ii)
means that “each physical parameter must retain temporal proximity in the bound (¢t = T;.)
between pre-segment (7, — At < t < T,) and post-segment (T, <t < T, + At).” In order
to apply this regularities to physical parameters, it is considered in the following physical
constraint.

[Constraint2] (proximity) Inthebound (¢ = T) between pre-segment and post-segment,
each physical parameter Ax(t), B(t), and 0x(t) must be connected within AA, AB,
Af, respectively. That is,

|Ak(Tr + O) - Ak(Tr - 0)| < AA:
|Bk(Tr+O) _Bk(Tr_O)| SAB, (21)
104(T} + 0) — 04(T, — 0)] < AO.

O

From Eqs. (7), (8) and (20), amplitude envelopes Ay (t) and By(t), and input phase 6y(t)
are functions of the unknown coefficient. Therefore, by considering the above relationships,
we can interpret physical constraint 2 in order to determine CY o, which is restricted within

Cra < Cro < Ckp, (22)

where C}, o, and Cj, g are the upper limit and the lower limit C} o in the bound between the
two segments.

Finally, we will apply regularity (iii). This regularity states that “many changes take
place in an acoustic event that affect all the components of the resulting sound in the
same way and at the same time” [2|. This regularity is considered the following physical
constraint.

[Constraint3] (Changes in an acoustic event) The amplitude envelope By(t) must
be highly correlated with the amplitude envelope Byy1(t) obtained by the output
of adjacent channel:

O

Since an amplitude envelope By(t) is a function of Cy from Egs. (8) and (20), and let
Bg(t) be an amplitude envelope By(t) determined by any Cj . In addition, a correlation
between amplitude envelopes is defined by

. By, B
Corr(By, By) = M (24)
|| Brll[| Br]
where By(t) = (B (t) + Bk_Al(t))/Q. Let T be an arbitrary past time, where integral
region is Tp <t < T, + At. Byi1(t) can be determined using Ag(t) and By(t) obtained
by Cj, from Fig. 4. Here, physical constraint 3 can be considered as selecting Cj o when
correlation (24) is a maximum. That is, by selecting Cj o as

max__ Corr(By, ék), (25)

Cr,a<Ck,0<Ck,g

the input phase 0y (t) can be uniquely determined from Eq. (20).
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4.3 Segregation algorithm

The theorem for segregation is obtained from previous lemma as follows.

[Theorem1] (Segregation algorithm) For the problem of segregating two acoustic sources
where 6015(t) = 0 and 0(t) = O9x(t), the input phase i (t) can be determined using
physical constraints 1-3 from Eqs. (20) and (25). Therefore, this problem can be
solved using the amplitude envelope Si(t) and the output phase ¢i(t) from Egs.

(1)~(8).

Proof. Refer to Lemma 1 and 2. O

Segregation algorithm based on Theorem 1 is shown in Fig. 5. When the problem of
segregating two acoustic sources is to be solved using Theorem 1, signal duration which
two signals exist in the same time region must be known. In Section 2, we assumed that
when localized fi(¢) is added to fa(t), the signal duration can be detected using onset and
offset of fi(t). By focusing on the temporal deviation of Si(t) and ¢x(t), onset and offset
of fi1(t) can be determined as follows:

1. Onset Ty, is determined by the nearest maximum point of |d¢y(t)/dt| (within 25 ms)
to the maximum point of |dSy(t)/dt|.

2. Offset Ty, is determined by the nearest maximum point of |dgy(t)/dt| (within 25 ms)
to the minimum point of |dS(t)/dt|.

Therefore, the segregated duration is t,, <t < t.g.

5 Simulations of segregation

In this section, simulations are carried out using the previous method. For each mixed
signal, the parameters of the proposed method are set so that the small segment is At =
3/ fo and T is past time of about 100At. In the segregated duration (To, <t < Tog), let
Smax be the maximum of Si(t), AB = 0.027 - Spax and A0 = 7/20. However, AA is set to
AA = |Ap(T, — At) — Ag(T, — 2At)| based on Eq. (21) because it is difficult to determine
as a constant by as it is affected by Cy(t) = Cyo, T, <t < T, + At.

5.1 Experimental stimuli

For experimental stimuli, we will assume f;(t) is a sinusoidal signal and f»(t) are two types
of noise where fo1(t) is an AM bandpassed noise and fa5(t) is a bandpassed random noise,
as follows:

fit) = Fge(gy), (26)
1200sin (27 fot),

g(t) = 03+T,, <t<0.7+T,, (27)
0, otherwise
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fo+500
fa(t) = > Eum(t)sin2rft+ R(f)),
f=fo—500
0<t<1.0, (28)
fo+500
faolt) = Z Egr(f,t)sin(2wft + R(f)),
f=fo—500
0<t<1.0, (29)

where Fgp(+) is a bandpass filter with a center frequency fo and a bandwidth of 23 Hz (as
shown in Fig. 2), fo = 600 Hz, T,, = 0.0125m,m = 0,1,---,9, and R(f) is an uniform
random within [—m, w]. Here, Fy(t) and Egr(f,t) are amplitudes in which white noise
lowpass filtered at 30 Hz and added to the bias value to prevent over modulation. Note
that the amplitude Er(f,t) fluctuates independently in frequency region f, and that the

power of noise is adjusted so that \/ fo1(t)?/ f2a(t)? = 1. Here, the bandwidth of noise is 1
kHz and the SNR between a sinusoidal signal and the bandpassed noise is —8.5 dB. These
mixed signals are shown in Fig. 6.

The two types of mixed signals are fu(t) = fi(t) + for(t) when fo(t) = fa1(t) and
fr(t) = fi(t) + faa(t) when fo(t) = fao(t). When a human hears these mixed signals,
he can hear the sinusoidal signal from fy(¢) caused by CMR; however cannot hear the
sinusoidal signal from fr(t) caused by Masking. These mixed signals are shown in Fig. 7.

In this simulation, segregation is done using 10 mixed signals which are made by varying
the onset of fi1(t), m=0,1,---,9 in Eq. (27).

5.2 Results

First, simulation of segregation are conducted using 10 mixed signals fa/(t). fu(t) is
decomposed by a wavelet filterbank, and is then applied to the segregation algorithm as
shown in Fig. 5. Si(t) and ¢(t) are determined as shown in Fig. 8. Onset time and offset
time of f1(t), Ton and Tyg, are determined as shown in Fig. 9. The results of simulation
for a sinusoidal signal (m = 0) as shown in Fig. 6 are shown in Fig. 10. From this figure,
it can be seen that the proposed method can extract a sinusoidal signal from mixed signal.

Similarly, simulations of segregation are carried out using 10 mixed signals fr(t). The
proposed model extracts so little of fi(¢) that fo(t) becomes approximately the same as
f@).

When the extracted signal corresponds to 10 mixed signals, the mean value of SNR in
the time region is calculated as

Jo f2)dt
Jo (fi(t) = fi#))2dt

Tt is shown that in the case of fy; (), the SNR of fi(t) is 12.9 dB (standard deviation 2.58)
and the SNR of f,(t) is 10.1 dB (standard deviation 1.58). In the case of fz(t), the SNR of
f1(t) is 1.6 dB (standard deviation 1.58) and the SNR of f5(t) is 8.7 dB (standard deviation
0.48). If f(t) can also enhanced using a bandpassed filter (BPF) with a center frequency
of 600 Hz and a bandwidth of 23 Hz and if f;(¢) is the enhanced signal, the SNR of f;(t) is

SNR = 10log,, i=1,2. (30)
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only 8.1 dB. From these results, it can be stated that the proposed method is superior in
improving SNR in comparison with method using BPF. In the case of fj/(t), the proposed
method can not only extract a sinusoidal signal more accurately than fr(t) but can also a
bandpassed noise. While engineering application call for a method of segregating all signals
from noisy signals, the proposed method successfully extracts signals by taking advantage
of the constraints of ASA (c. f. fa(t)). Note that the above results show of CMR, which
is as the human auditory phenomenon. To examine this similarity, we will carry out a
simulation of CMR in next section by setting the model parameters to the human auditory
properties.

6 Parameter setting for the human auditory proper-
ties

6.1 Re-design of the wavelet filterbank

The wavelet filterbank shown in Fig. 1 is adjusted to the human auditory properties. ERB
(Equivalent Rectangular Bandwidth) of an auditory filter described in previous section is
determined as a function of the number of auditory filters. By setting the parameters to
the human auditory properties. The constant Q filterbank is constructed ERB equals 1
and when a center frequency of auditory filter is 600 Hz (K=128) [24].

6.2 Conditions and Results

We will consider as experimental stimuli ten pairs of two types of mixed signals used in
previous section, fy(t) and fr(t). Although the simulation for CMR [19] was carried out
for a function of the bandwidth of noise, this simulation is carried out for a function of a
number of adjacent a}lditory filters L related to the bandwidth of a bandpassed noise. The

amplitude envelope B k(t) in physical constraint 3 is determined by

2 1 L N
Bilt) === > Biu(®) (31)
2L€:—L,€;ﬁ0

while the input phase can be uniquely determined from Eqs. (20) and (25).

Relationship between the bandwidth and the improved SNR is shown in Fig. 11. In
this figure, the vertical axis shows inversely the improved SNR. of a sinusoidal signal and
the horizontal axis shows the bandwidth in relation to L. The real line and the error-bar
show mean and standard deviation of the SNR, respectively. It was shown that, for the
mixed signal fy(t), the SNR of sinusoidal signal f;(t) can be improved as the number of
adjacent auditory filters L increase. In contrast, it is shown that, for the mixed signal fr(t),
f1 (t) cannot be improved as L increases. Here, improvement of the extracted sinusoidal
signal is equivalent to masking release. These results show that the masking of a sinusoidal
signal can be released as a function of the bandwidth of bandpassed noise when noise is
AM banpassed noise, and that it cannot be released as a function of the bandwidth when
noise is bandpassed random noise. For reasons, the proposed model can be interpreted as
a computational model of CMR.
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7 Conclusions

This paper proposed a method of signal extraction from noise-added signal using the am-
plitude envelope, the output phase and the input phase obtained from a noise-added signal
passed through the wavelet filterbank. Results of simulation using this method show that a
sinusoidal signal can be easily extracted if it is added to AM bandpassed noise, and that it
cannot be extracted if it is added to a bandpassed noise. In applications, we feel that any
signal can be segregated from a noisy signal. However, because it is impossible to segregate
for a signal without using certain constraints, the proposed model extracts desired signal
from a noisy signal using constraints based on auditory scene analysis.

If the parameters of wavelet filterbank are set to human auditory properties, it can be
shown that the masking of a sinusoidal signal can be released as a function of the bandwidth
of bandpassed noise when noise is AM bandpassed noise, and that it can not be released as
a function of the bandwidth when noise is a bandpassed random noise. From these results,
it can be interpreted that the proposed model is a computational model of co-modulation
masking release.

In this paper two of the four heuristic regularities proposed by Bregman, (2) gradualness
of change and (4) changes in an acoustic event, were considered as physical constraints in
order to determine the input phase. Future work includes determining the input phases
01(t) and Ok (t). We feel that these parameters can be determined using physical con-
straints related the remain regularities, (1) common onset and offset and (3) harmonicity.
We also feel that the proposed model can extract the desired complex tone and speech
from noisy signals using the above constraints.
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Appendix 1. Proof of Lemma 1

The wavelet transform in Eq. (12) is a complex representation for the output of analytic
filter in Eq. (4).

Xie(t) = Sk (t)ej(wkt+¢k(t))
= f(aab): a=a""z,b=1t. (32)
Representing an absolute value for both terms, we obtain

X5 ()] = Si(t) = | F(a~% 1) (33)

Similarly, comparing the phase terms between Eqs. (32) and (12), we obtain

wit + or(t) = arg(f(a,b)). (34)

Since the phase spectrum arg( f (a, b)) is represented by
-1 [m{]‘&:(a* b)}
Re{f(a,b)}

it becomes a periodical ramp function within —7 < arg(f(a,b)) < 7. Differentiating both
terms in Eq. (34), it becomes

arg(f(a, b)) = tan (35)

dor(t) B 0 oK
Wi pran aarg(f(a .1)).
After clearing, we obtain
T arg(f(a 1) — wg.

Hence, the output phase ¢y(t) is represented by

Pr(t) = / (% arg (f(o/“_%,t)) — wk> dt.
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Auditory filterbank Separation Grouping
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Figure 1: Wavelet analysis-system.
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Figure 2: Impulse response and amplitude of gammatone filter (fo = 600[Hz], N =4,b; =
22.9945).
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Figure 3: Frequency characteristics of wavelet filterbank.

IGT()]
f
k1
AD)
B “7<7<20<>wm
- fo(t
Ak (t Ak+1(t>\ 0
fo f[HZ

Figure 4: Characteristics of adjacent auditory filters.
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Input phases 01 (t) = 0, 0 = 025 (¢);
for k:=1to K do
determine Sy (t) and ¢ (t) from Lemma 1;
detect onset Toy and offset Tog from dSk(t)/dt and
dr(t)/dt;
let the segregated duration be Ty, <t < Tog;
split the segregated duration into I segments of
for i:=1to I do
determine C}C,a < C}c70 < C’kﬁ;
for Ck,g = Ck,a to Ck,ﬁ do
determine @ (t) related to Cj.o from Lemma 2;
determine A (t) and By(t);
In adjacent auditory filters(Fig.4),
(1) determine Ay (t) from amplitude
characteristic;
(2) determine Sk1(t) and ¢p11(t) from
Lemma 1;
(3) determine ékﬂ(t) using Akil(t), Sk+1(t),
and ¢p+1(t);
(4) determine By¢(t) from Eq.(8);
(5) Bi(t) = (Br—1(t) + Brta(t))/2;
(6) determine Corr(By(t), Bi(t)) from Eq.(24);
end
determine the unknown coefficient C}, o when
Eq.(25) is a maximum;
within Cf o < Co < Ci
determine 6 (¢t) from Eq.(20);
determine Ay (t) and By (t) from Egs. (7) and (8),
respectively;
end
determine each component from Egs. (2) and (3);
end
reconstruct fi(t) and fa(t);

Figure 5: Signal segregation algorithm.
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Figure 6: Acoustic signals: fi(t),m =0, fa1(t), and fao(2).
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Figure 7: Noise-added signals: fi/(t) and fr(?).
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Figure 8: Amplitude envelope Si(t) and output phase ¢x(t) (In the case of noise-added
signal fa/(t)).
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Figure 9: dSk(t)/dt and d¢y(t)/dt (In the case of noise-added signal f(t)).
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Figure 10: Extracted result (In the case of noise-added signal fas(t)): fi(t) and fy(t).
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Figure 11: Relationship between bandwidth and masking release.



