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Abstract

This paper proposes an auditory sound segre-
gation model based on auditory scene analysis.
It solves the problem of segregating two acous-
tic sources by using constraints related to the
heuristic regularities proposed by Bregman and
by making an improvement to our previously
proposed model. The improvement is to recon-
sider constraints on the continuity of instanta-
neous phases as well as constraints on the con-
tinuity of instantaneous amplitudes and funda-
mental frequencies in order to segregate the de-
sired signal from a noisy signal precisely even in
waveforms. Simulations performed to segregate
a real vowel from a noisy vowel and to compare
the results of using all or only some constraints
showed that our improved model can segregate
real speech precisely even in waveforms using
all the constraints related to the four regulari-
ties, and that the absence of some constraints
reduces the segregation accuracy.

1 Introduction

The problem of segregating the desired signal from a
noisy signal is an important issue not only in robust
speech recognition systems but also in various types of
signal processing. It has been investigated by many re-
searchers, who have proposed many methods. For ex-
ample, in the investigation of robust speech recognition
[Furui and Sondhi, 1991], there are noise reduction or
suppression [Boll, 1979] and speech enhancement meth-
ods [Junqua and Haton, 1996]. In the investigation of
signal processing, there is signal estimation using a lin-
ear system [Papoulis, 1977] and signal estimation based
on a stochastic process for signal and noise [Papoulis,
1991]. One recent proposal is Blind Separation [Sham-
sunder and Giannakis, 1997] which estimates the inverse-
translation-operator (input-output translation function)
by using the observed signal in order to estimate the
original input.

However, in practice, it is difficult to segregate each
original signal from a mixed signal, because this prob-
lem is an ill-posed inverse problem and the signals exist

in a concurrent time-frequency region. Therefore, it is
difficult to solve this problem without using constraints
on acoustic sources and the real environment.

On the other hand, the human auditory system can
easily segregate the desired signal in a noisy environ-
ment that simultaneously contains speech, noise, and re-
flections. Recently, this ability of the auditory system
has been regarded as a function of an active scene anal-
ysis system. Called ” Auditory Scene Analysis (ASA)”, it
has become widely known as a result of Bregman’s book
[Bregman, 1990]. Bregman has reported that the human
auditory system uses four psychoacoustically heuristic
regularities related to acoustic events, to solve the prob-
lem of Auditory Scene Analysis. These regularities are

(i) common onset and offset,

(ii) gradualness of change,

(iii) harmonicity, and
) changes occurring in the acoustic event [Bregman,

1993].

If an auditory sound segregation model were constructed
using constraints related to these heuristic regularities,
it should be possible to solve the sound segregation prob-
lem (ill-posed inverse problem) uniquely. In addition, it
would be applicable not only to a preprocessor for robust
speech recognition systems but also to various types of
signal processing.

Some ASA-based investigations have shown that it
is possible to solve the segregation problem by apply-
ing constraints to sounds and the environment. These
approaches are called ”Computational Auditory Scene
Analysis (CASA)”. Some CASA-based sound segrega-
tion models already exist. There are two main types of
models, based on either bottom-up or top-down process-
es. Typical bottom-up models include an auditory sound
segregation model based on acoustic events [Cooke, 1993;
Brown, 1992], a concurrent harmonic sounds segrega-
tion model based on the fundamental frequency [de
Cheveigné, 1993; 1997], and a sound source separa-
tion system with the ability of automatic tone modeling
[Kashino and Tanaka, 1993]. Typical top-down model-
s include a segregation model based on psychoacoustic
grouping rules [Ellis, 1994; 1996] and a computational
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model of sound segregation agents [Nakatani et al., 1994;
1995a; 1995b]. All these models use some of the four reg-
ularities, and the amplitude (or power) spectrum as the
acoustic feature. Thus they cannot completely extract
the desired signal from a noisy signal when the signal
and noise exist in the same frequency region.

In contrast, we have been tackling the problem of seg-
regating two acoustic sources as a fundamental prob-
lem, and considering that it can be uniquely solved us-
ing not only amplitude but also phase information and
using mathematical constraints related to the four psy-
choacoustically heuristic regularities [Unoki and Akagi,
1997a; 1999].

This fundamental problem is defined as follows [Unoki
and Akagi, 1997a; 1999]. First, only the mixed signal
f(t), where f(t) = fi(t) + fa(t), can be observed. Next,
f(¢) is decomposed into its frequency components by a
filterbank (the number of channels is K). The output of
the k-th channel Xy (t) is represented by

Xult) = SO expliont +30u(0). (1)
Here, if the outputs of the k-th channel Xj x(¢) and
Xo,k(t), which correspond to fi(t) and fa(t), are as-
sumed to be
lek(t) = Ag(t) exp(jwrt + j011(¢)), (2)
Xox(t) = Bi(t)exp(jwit + jbak(t)), ®3)

then the instantaneous amplitudes of the two signals
A (t) and Byg(t) can be determined by

A(0) Sk (¢) sins(iizzlgté)— or(t)) ’ (4)
But) = Sk(t) Sins(i(fle(:zt)_ 91k(t))’ (5)

where 0 (t) = Oax(t) — 015 (t), Ok(t) # nw,n € Z, and
wy, is the center frequency of the k-th channel. Instanta-
neous phases 01 (t) and ax(t) can be determined by

—  _arctan Yip(t) cos ¢ (t) — sin ¢ (t)
but) = tan ( s1n¢k( )+ cos ¢ ))
. )Ye(t)
+ arcsin (Sk N0l ) (6)
C arctan Y5 (t) cos ¢y (t) + sin ¢ (¢)
Oar(t) = t (Yk )sin qbk(t) ~cos ¢k(t)>
. )Yi(t)
-+ arcsin ( St t) o ) (7)
where
Yie(t) = VA& BL®)? = Zk(t)2/ Zk(t),  (8)
Zk(t) = Sk(t)z — Ak(t)z — Bk(t)2. (9)

Hence, f1(t) and f3(¢) can be reconstructed by using
the determined pair of [A(t) and 014 (¢)] and the deter-
mined pair of [By(t) and 62 (t)] for all channels. How-
ever, Ay (t), By(t), 61x(t), and O35 (t) cannot be uniquely
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Figure 1: Auditory sound segregation model.

determined without some constraints as is easily under-
stood from the above equations. Therefore, this problem
is an ill-inverse problem.

To solve this problem, we have proposed a basic
method of solving it using constraints related to the four
regularities [Unoki and Akagi, 1997b; 1997¢]| and the im-
proved method [Unoki and Akagi, 1998; 1999]. However,
the former cannot deal with the variation of the fun-
damental frequency, although it can segregate the syn-
thesized signal from the noise-added signal. And the
latter has difficulty completely determining the phases,
although it can precisely segregate a vowel from a noisy
vowel at certain amplitudes by constraining the conti-
nuity of the instantaneous amplitudes and fundamental
frequencies.

This paper proposes a new sound segregation method
to deal with real speech and noise precisely even in wave-
forms, by using constraints on the continuity of instanta-
neous phases as well as constraints on the continuity of
instantaneous amplitudes and fundamental frequencies.

2 Auditory sound segregation model

In this paper, it is assumed that the desired signal
fi(t) is a harmonic complex tone, where Fy(t) is the
fundamental frequency. The proposed model segregates
the desired signal from the mixed signal by constraining
the temporal differentiation of Ag(t), 01(t), and Fy(t).

The proposed model is composed of four blocks: an
auditory-motivated filterbank, an Fy estimation block, a
separation block, and a grouping block, as shown in Fig.
1. Constraints used in this model are shown in Table 1.



Table 1: Constraints corresponding to Bregman’s psychoacoustical heuristic regularities.

Regularity (Bregman, 1993)

Constraint (Unoki and Akagi, 1999)

(1) Unrelated sounds seldom start or stop at exactly
the same time (common onset/offset)
(ii) Gradualness of change
(a) A single sound tends to change its properties
smoothly and slowly

(b) A sequence of sounds from the same source

tends to change its properties slowly

(iii) When a body vibrates with a repetitive period,
these vibrations give rise to an acoustic pattern
in which the frequency components are multiples
of a common fundamental (harmonicity)

(iv) Many changes that take place in an acoustic event
will affect all the components of the resulting
sound in the same way and at the same time

Synchronism of onset/offset

(a) Slowness (piecewise-

(b) Smoothness
(Spline interpolation)
Multiples of the repetitive
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Figure 2: Temporal variation of the fundamental fre-
quency.

2.1 Auditory-motivated filterbank

The auditory-motivated filterbank decomposes the ob-
served signal f(¢) into complex spectra Xj(t). This
filterbank is implemented as a constant Q gammatone
filterbank, constructed with K = 128, a bandwidth of
60 6000 Hz, and a sampling frequency of 20 kHz [Un-
oki and Akagi, 1997a; 1999]. Si(t) and ¢y(t) are de-
termined by using the amplitude and phase spectra de-
ﬁned] by the wavelet transform [Unoki and Akagi, 1997a;
1999].

2.2 Fj estimation block

The Fj estimation block determines the fundamental
frequency of f1(¢). This block is implemented as the
Comb filtering on an amplitude spectrogram Sy (t)s [Un-
oki and Akagi, 1998].

In this block, the Comb filter is defined by

(a+1)

Cfoak Fla 1)) Wk =1 Wi,
Comb(k, 1) = { e eV 1<n<N (10)
0, otherwise

where k and [ are indices, wi and w; are the center fre-
quencies in channels, and N is the number of harmonics

of the highest order. Then, f, which corresponds to the

channel containing the fundamental wave, is determined
by
K
l(t; Lr) = argmaxz (11)
IsLr oy
where Lp is the upper-limited search region of [. The
estimated Fy(t) is determined by

Fo(t) = nLlin std (w;/2m).

Comb(k, 1) Sk (1),

(12)

In this paper, we let the parameters be N = 10 and
K/A<Lp <K/2.

Since the number of channels in X (¢) is finite, the
estimated Fy(t) takes a discrete value as shown in Fig. 2.
In addition, the fluctuation of F(t) has a staircase shape
and the temporal differentiation of Fy(t) is zero at any
segment. Therefore, this paper assumes that Eg r(t) =0
in constraint (ii) of Table 1 for a segment. Let the length
of the above segment be T}, — Ty 1, where T} is the
continuous point of Fy(t).

2.3 Grouping block

The grouping block determines the concurrent time-
frequency region of the desired signal using constraints
(i) and (iii) in Table 1, and then reconstructs the segre-
gated instantaneous amplitude and phase using the in-
verse wavelet transform [Unoki and Akagi, 1999]. f;(t)
and fy(t) are the reconstructed fi(t) and fa(t).
Constraint (i) is implemented by comparing the on-
set/offset (T on, Tk o) of Xi(t) with the onset/offset
(Ts, Tg) of X;(t) corresponding to Fy(t), where ATy =
25 ms and ATg = 50 ms [Unoki and Akagi, 1999]. In
this paper, onset Ty on and offset T oa in X (t) are de-
termined as follows.
1. Omnset T} on is determined by the nearest maximum
point of |d¢y(t)/dt| (within 25 ms) to the maximum
point of dS(t)/dt.

2. Offset T}, of is determined by the nearest maximum
point of |d¢(t)/dt| (within 25 ms) to the minimum
point of dSi(t)/dt.
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Figure 3: Signal processing of a separation block.

Constraint (iii) is implemented by determining the
channel number corresponding to the integer multiples of
Fy(t). The channel number ¢ of X;(¢), in which the har-
monic components exist in the output of the ¢-th chan-
nel, is determined by

P S U 720) P

-, N, 13
2 log a s Foa( )

where « is the scale parameter and [-] is the ceil sym-
bol, meaning the approximation of the closest integer
value toward positive infinity. In addition, K is an
even number and f; is the center frequency of the ana-
lyzing wavelet in the constant QQ gammatone filterbank
(fo = 600) [Unoki and Akagi, 1999].

2.4 Separation block

The separation block determines Ay (t), By(t), 01 (t),
and 6o (t) from Sk (t) and ¢x(t) using constraints (ii)
and (iv) in the determined concurrent time-frequency
region. In this paper, the improvement of the auditory
sound segregation model is to reconsider the constraints
on the continuity of 614(t) as well as the constraints
on the continuity of Ag(t) and Fy(t). Constraint (ii)
is implemented such that Cy gr(¢t) and Dy r(t) are lin-
ear (R = 1) polynomials, in order to reduce the com-
putational cost of estimating C gr(t) and Dy g(t). In
this assumption, Ay (t) and Hlk(t), which can be allowed
to undergo a temporal change 1n region constrain the
second—order polynomials (A (¢) f Cra(t)dt + C,

and 014(t) = kal + D ) Then, substltutlng
dAg(t )/dt = Cj,r(t) into Eq. (4), we get the lin-
ear differential equation of the input phase difference
01 (t) = b25(t) — 014 (t). By solving this equation, a gen-
eral solution is determined by

Sk(t) sin(Px(t) — 01k (2)) )
Si(t) cos(pr(t) — 01k (t)) + Cr(t) )’

where Ck( = —kaR dt —Cro = —Ak( ) [Unoki
and Akagi, 1999)].
The signal flow of the separation block is shown in Fig.

3. In the segment T}, — Tj,—1 that can be determined by
Eo r(t) = 0, the terms Ag(t), Bg(t), O1x(t), and o (¢)

01 (t) = arctan <

are determine(} by the following steps. Fir§t, the estima-
tion regions, C o(t) — Pi(t) < Ci1(t) < Cio(t) + Pi(t)
and Dy, o(t) = Q(t) < Di(t) < Dio(t) + Qi (t), are de-
termined by using the Kalman filter, where C o(t) and

Dy, o(t) are the estimated values and Py (t) and Qy(t) are
the estimated errors (see Appendix A). Next, the candi-
dates of C 1(t) at any Dy, 1(t) are selected by using the
spline interpolation in the estimated error region (see

Appendix B). Then, Cj.1(t) is determined by using

< Ap Ay >
arg max I AR (15)

Cr,o—Pr<Ch,1<Cl,o+Px ||Ak||||AkH

Cri=

where Ay, (t) is obtained by the spline interpolation and

Ay (t) is determined in across-channel that satisfies con-
straint (iii) as follows.

> 1 Ag(t)
Ak:( ) = = Z H A (t)Hu (16)
O peL oz 1
where L is a set of ¢ that satisfies Eq. (13). Finally,
Dy1(t) is determined by using
. <A ,A >
Dy = arg max LR (17)

Dk,o—Qr<Dg1<Dy 0+Qxk HA]CHHA]CH

Since 61, (t) and 0y (t) are determined from Dy, 1 (t) and
Ci.1(t), the terms Ay (t), By(t), and 0 (t) can be deter-
mined from Eq. (4), Eq. (5), and 02 (t) = 0x(t) + 01 (),
respectively.

2.5 Overview of the proposed model

An overview of signal processing of the proposed mod-
el is shown in Fig. 4. First, noisy vowel /a/ f(t) shown
in Fig. 4 A (the SNR of f(¢) is 10 dB) is decomposed
into S (t) and ¢ (t) as shown in Figs. 4 B and C, respec-
tively. Next, Fy(t) is estimated as shown in Fig. 4 D.
The concurrent time-frequency region of the desired sig-
nal fi(t) is determined using constraints (i) and (iii) as
shown in Figs. 4 E and F. Finally, the instantaneous am-
plitudes and the instantaneous phases of the two signals
are determined from S(t) and ¢ (t) using constraints (i-
i) and (iv). The determined Ay(t) and ;4 (t) are shown
in Figs. 4 H and I, respectively. The segregated signal
fi(t) is shown in Fig. 4 J. In this figure, note that the

segregated By(t), fax(t), and fo(t) are omitted.

3 Simulations

To show that the proposed model can segregate the de-
sired signal f;(¢) from a noisy signal f(t) precisely even
in waveforms, we evaluated the following two issues by
using four simulations. One is to evaluate the advantage
of constraints, and the other one is to evaluate whether
or not the proposed model can precisely segregate the
desired vowel from noisy vowel. In these simulations, we
used the following signals:
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(a) noisy synthesized AM FM harmonic complex tone
(LMA-synthesis vowel /a/) [Unoki and Akagi, 1998];

(b) noisy real vowel (/a/, /i/, /u/, e/, /o/);

(¢) noisy real continuous vowel (/aoi/); and
(d) concurrent double vowel (signal (b) + signal (c)),

where the noise was pink or white noise and the SNRs of
noisy signals ranged from 5 to 20 dB in 5-dB steps. The
speech signals were the Japanese vowels of four speakers
(two males and two females) in the ATR-database [ATR.
Tech. Rep., 1988].

We used an evaluation measure such as SNR to evalu-
ate the segregation performance of the proposed method,
as defined by

foT J1 (t)Zdt
JT(R ) = f)2dt

where f;(t) is the original signal and f; (¢) is the segregat-
ed signal. This measure is called “segregation accuracy.”

(18)

0logyg

3.1 Evaluation of the constrains

To show the advantages of the constraints in Table 1,
we compared the performances of our method under 11-
conditions as shown in Table 2. In this simulation, we
used two types of desired signal f1(¢): simulation signal
(a) and vowel /a/ of the male speaker (mau) in simula-
tion signal (b); f2(t) was bandpassed pink-noise. Condi-
tions 1 — 3 denote sound segregation using three of the
constraints. Note that constraints (ii-b) and (iv) can-
not be separately used because Cy 1(t) and Dy 1(t) are
uniquely determined using these constraints. Conditions
4 — 6 denote sound segregation using the two of the con-
straints. Conditions 7 —9 denote sound segregation using
the only one of the constraints. Note that utilizing con-
straint (ii-a) corresponds to estimating Ag(t) and 601, (¢)
using the Kalman filter for any channels. Condition 10
denotes sound segregation without all the constraints.

Segregation accuracy in this simulation for AM—FM
complex tones is shown in Fig. 5. Segregation accura-
cy in this simulation for vowel /a/ is shown in Fig. 6.
In these figures, segregation accuracy values above the
dashed line show the improved accuracy, that is, noise
reduction. The results show that segregation accuracy
achieved by the proposed model was the best among the
constraints. Moreover, comparisons between four groups
(conditions 0-1-3-4-6-7, 0-1-2-3-4-5-9, 0-1-2-5-6-8,
and 0—2-3) show that the absence of some constraints
reduces the accuracy. These groups were selected by
focusing on only one constraint in Table 2 and by omit-
ting some of the constraints in turn. Hence, all the con-
straints related to the four regularities are useful for seg-
regating the desired vowel from a noisy vowel.

An example of segregation in case of Fig. 5 (c) is
shown in Fig. 7. An example of segregation in case of
Fig. 6 (c) is shown in Fig. 8.

3.2 Evaluation of the proposed model

To show that the proposed method can segregate the
desired vowel from a noisy vowel precisely even in wave-
forms, we performed three simulations using signals (b)—
(d) under the following conditions:

1. vowel segregation (/a/, /i/, /u/, /e/, Jo/) from a
noisy vowel: the dataset size was 160 (five vowels,
four speakers, four noise signals, and two types of
noise);

2. vowel segregation (/aoi/) from a noisy vowel: the
dataset size was 32 (one vowel, four speakers, four
noise signals, and two types of noise); and

3. vowel segregation from another vowel (double vowel
condition): one vowel was (/a/, /i/, /u/, /e/, /o/)
of the male (mau) or female (fkn) speaker and the
other was /aoi/ of the female (fsu) or male (mht)
speaker, and the dataset size was 40 (five vowels,
two speakers, and four noise signals).

In addition, we compared the performances of the pro-
posed model with those of other typical method (using
constraints 1, 8 and, 10) for the above simulations. The



Table 2: Comparisons of constraints.

Constraints /condition No. | Proposedmodel [T 2 3[4 5 6[7 8 9]10
(1) synchronism of onset/offset ) o x olo x o]o x x| x
(ii-a) slowness 0 o 0o olo o x|[x x 0] X
(iii) harmonicity 0 o o X|x o of|lx o x| x
(ii-b) smoothness 0 X 0 O0|x x XxX|x x x| X
(iv) correlation 0 X 0o o|xXx x X|xXx X X|X
“0”: used constraint, “x”: unused constraint
() SNR=20 dB (b) SNR=15 dB () SNR=20 dB (b) SNR=15 dB
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Figure 5: Segregation accuracies for evaluation using sig-
nal (a). Condition #0 denotes the use of the proposed
method.

other methods using constraints 1, 8, and 10 correspond
to:

(1) extracting the harmonics using the Comb filter and
estimating Ay (¢) and 61 (¢) using the Kalman filter,
(2) extracting the harmonics using the Comb filter, and
(3) doing nothing,.
Comparison with condition (1) shows that the proposed
method has the advantage of the smoothness of the in-
stantaneous amplitude and phase, and comparison with
condition (2) shows that it has the advantage of the in-

stantaneous phase. Moreover, comparison with condi-
tion (3) shows that the proposed method’s segregation
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Figure 6: Segregation accuracies for evaluation using
vowel /a/ of the male speaker in signal (b). Condition
#0 denotes the use of the proposed method.

accuracy was improved.

The segregation accuracies in the three simulations are
shown in Figs. 9, 10 and 12. In these figures, the bar
height shows the mean of the segregation accuracy and
the error bar shows its standard deviation. The results
show that the proposed method obtained better segrega-
tion accuracy than the other three methods. They show
that it can segregate the desired vowel from a noisy vowel
precisely even in waveforms. In addition, the comparison
between the proposed method and condition (2) shows
that the simultaneous signals can be precisely segregat-
ed using the instantaneous amplitude and phase. The
comparison with condition (3) shows that the improve-
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ments in segregation accuracies at an SNR of 5 dB for
simulations 1, 2 (in the case of pink-noise), and 3 were
about 9, 7, and 4 dB, respectively.

3.3 Comnsiderations

The above results show the advantage of the proposed
method. However, when the SNR of f(¢) is 20 dB,
the improvements in segregation accuracy using the pro-
posed model, shown in Figs. 9, 10, and 12, were smaller.
We suspect that the order of R for the polynomial ap-
proximation (Ck r(t), Di,r(t), and Eg r(t)) affects the
improvement in segregation accuracy obtainable using
the proposed model.

The results of simulations 1 and 2 showed that the d-
ifference in segregation accuracy improvement depended
on the two types of noise. We suspect that the construc-
tion of the constant Q filterbank used here affected the
segregation accuracy depending on the noise type. S-
ince it has a constant Q on any channel (the same filter
shape within all channels), the power of the components
for which pink noise passed through the channels would
be distributed approximately equally, while the power
of the components for which white noise passed through
the channels would be concentrated at higher frequen-
cies. On the other hand, the harmonic components of
the desired signal should not be satisfied precisely at
a higher frequency, while they should be satisfied pre-
cisely at a lower frequency. Therefore, we consider that
the interplay between the above factors reduces the im-
provement in segregation accuracy obtained by using the
proposed model, as shown in Figs. 9 (b) and 10 (b).
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Figure 8 Example of segregation for noisy vowel /a/
of the male speaker (mau): (a) original /a/ fi(t), (b)
mixed signal f(t), (¢) fundamental frequency Fy(t), (d)
segregated signal fi(t).

4 Conclusions

This paper proposed a new method of extracting the
desired speech from noisy speech precisely even in wave-
forms by using constraints on the continuity of instan-
taneous phases as well as those on the continuity of in-
stantaneous amplitudes and fundamental frequencies.

In order to show that the proposed model can extract
real speech from noisy speech precisely even in waveform-
s, we demonstrated one evaluation and three simulations
of segregating two acoustic sources. The result of eval-
uation showed that all constraints related to the four
regularities are useful in order to segregate the desired
vowel from a noisy vowel. The results of the three simu-
lations showed that the proposed method can segregate
the desired vowel from a noisy vowel precisely even in
waveforms. It was also shown that the proposed method
can precisely segregate the desired signal from the simul-
taneous signals using the instantaneous amplitude and
phase.

Future work includes (1) reconsidering the order of
the polynomial approximation of Cy r(t) and Dy r(t)
for vowel segregation and (2) improving the proposed
model so that it can be applied to consonants-vowel seg-
regation.
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Appendix A: Determining the region
estimated by the Kalman filtering

In this paper, we consider how to estimate C} o and
Dy from the observed component Xy (¢) using the
Kalman filter. The estimation duration is [Th—1 —T}]. It
is then decomposed into discrete time t,,, = m-At, m =
0,1,2,---, M, where the sampling period is At = 1/f



Table 3: Definitions of symbols for the Kalman filtering

Symbol Estimation of Cy o(f) Estimation of Dy, o(t)
Observed signal y,, Xi(tm) exp(j bk (tm))

State variable X, Cr(tm) exp(j Dy (tm))
Observed noise v, Xo i (tm) Xo ks (tm)/Sk(tm)
System noise w, Wi, Wi,

State transition matrix F,,, AC(t, ADy(ty,)
Observation matrix H,, exp(jwitm) Cr(tm)/Sk(tm)
Driving matrix G, 1 1

Initial value xq|_4 0 1

Initial value 20\71 Sk (to) exp(jor(to))

and fs is the samphng frequency. Flrst let Ck(t) and
Dk( ) be Ck kag dt and Dk ka:O dt
respectively. Here let the temporal varlatlons of C(t )
and Dy (t) at discrete time tm be

Chltms) = Crlbn)ACk(tm) +wm, (19
 Cltm) — Ciltme)

ACk(t,) = 142 C’k(t,:) . (20

(m+1) = Dk(tm)ADk(tm)+wm: (21)
- D (tm> —D (tmfl)

ADi(tn) = 14— Dk(t,:) . (22)

where tg = Ty,_1 and tp; = T},. It is assumed that the
variation error is represented by white noise with mean
0 and variance o2,.

Next, for the system of the Kalman filtering problem:

Xmt1 = Fpxm + Grwn (state), (23)
Ym = Hpxpm+ vy (observation), (24)
in order to estimate Cj o(t), we apply Eq. (19) to Eq.

(23) and apply Eq. (1) to Eq. (24). Using the same
steps as for the system of the Kalman filtering problem,
in order to estimate Dy o(t), we apply Eq. (21) to Eq.
(23) and apply the normalized Eq. (1) to Eq. (24). The
parameters in Egs. (23) and (24) are shown in Table 3.
In these systems, the mean and variance of the terms,
X9, Wy, and v,,, are known. And F,,, G,,,, H,,, and
v, are known matrices. The Kalman filtering problem
is to determine the minimum variance requirement X, |,
from the observed y,,, m =0,1,2,---, M as follows.

s Ym> (25)

It is calculated by sequentially solving the following
equations:

)A(m\m = E(Xm +}’0;"'

1. Filtering equation

)A(m\m = )A(m|‘m71 + Km(Ym - Hmf(m\mfl) (26)
2. Kalman gain
S nimot HXT
K,, = mim—1""m (28)

Hmim\mle:nT + E’Um

3. Covariance equation for the estimated-error

Snim Sime1 — KnHy S mo1 (29)
zA:m+1\m = PA‘mz]m\mF;knT + szmejnT(?,O)

4. Initial state

Xo|-1 = Xo, Xoj-1 = Za, (31)

The symbols and X are the mean and variance of
a random variable, respectively.

Finally, performing the Kalman filtering according to
Egs. (23) and (24), we obtain the minimal-variance es-
timated value X(t,,) = Xy |m and the covariance matrix

As a result, the
estimated Cj,(t) and Dy o(t), and the estimated errors
Py(t) and Qp(t) are determined by Cy o(t) = |dx(t)/dt|
and Py(t) = |dé(t)/dt|, Dyo(t) = arg(dx(t)/dt), and
Qr(t) = arg(dé(t)/dt), respectively.

Appendix B: Candidate selection of Cj, 1 (t)
and Dy, ;1 (t) using the spline interpolation
In order to determine whether A (t) and 615 (¢) satisfy
constraint (ii-b) as shown in Table 1, consider the selec-
tion of candidates for Cy, 1(¢t) and Dy 1(t).

To estimate Cp1(t) and Dy 1(t), where R = 1,

that satisfy constraint (ii-b), we interpolate A,(CRH) (t)
and 0§1,:+1)(t), where R = 1, A,(CRH)(t) = A, and
O\ (1) = 1, i = 1,2+, T in [ta, ty]. According to
constraint (ii-b), the smoothest interpolation function is
the (2R+1)th-order spline function. This spline function
is unique.

First, we determine candidates of Cy, 1(t) and Dy 1(t)
using the spline function within the estimated error re-
gion: C]c’g(t) — Pk(t) < C]c’l(t> < C]cyo(t) + Pk(t> and
Dkyg(t) — Qk(t) < Dkyl(t) < Dkyg(t) + Qk(t). Then, se-
lecting a correct solution from the candidates of C 1(¢)
and Dy 1(¢), we can uniquely determine the smoothest
Ai(t) and 01(t) from Cy 1(t) and Dy 1(t), respectively.

In this paper, we use the cubic spline function (2R+1),
where R = 1. The interpolation region is from t, = T},
to t, = Tp. The interpolation interval is A7 = 15 x
(27 Jwi ) At. Therefore, I = [(t, — tq)/AT].

é(tm) = ﬁm‘m at discrete time tp,.



