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ABSTRACT

This paper proposes an auditory sound segregation model
based on auditory scene analysis. It solves the problem
of segregating two acoustic sources by using constraints
related to the heuristic regularities proposed by Breg-
man and by making an improvement to our previously
proposed model. The improvement is to reconsider con-
straints on the continuity of instantaneous phases as well
as constraints on the continuity of instantaneous ampli-
tudes and fundamental frequencies in order to segregate
the desired signal from a noisy signal precisely even in
waveforms. Simulations performed to segregate a real
vowel from a noisy vowel and to compare the results of
using all or only some constraints showed that our im-
proved model can segregate real speech precisely even in
waveforms using all the constraints related to the four reg-
ularities, and that the absence of some constraints reduces
the segregation accuracy.

1. INTRODUCTION

Bregman has reported that the human auditory system
uses four psychoacoustically heuristic regularities related
to acoustic events to solve the problem of auditory scene
analysis [1]. If an auditory sound segregation model was
constructed using these regularities, it would be applica-
ble not only to a preprocessor for robust speech recogni-
tion systems but also to various types of signal processing.

Some ASA-based segregation models already exist. There
are two main types of models, based on either bottom-up
[2] or top-down processes [3, 4]. All these models use
some of the four regularities, and the amplitude (or pow-
er) spectrum as the acoustic feature. Thus they cannot
completely segregate the desired signal from noisy signal
when the signal and noise exist in the same frequency
region.

In contrast, we have discussed the need to use not on-
ly the amplitude spectrum but also the phase spectrum
in order to completely extract the desired signal from
a noisy signal, thus addressing the problem of segregat-
ing two acoustic sources [5]. This problem is defined as
follows [5, 7). First, only the mixed signal f(t), where
f(t) = f1(t) + f2(t), can be observed. Next, f(t) is de-
composed into its frequency components by a filterbank

(K channels). The output of the k-th channel Xj(¢) is
represented by

X (t) = Sk(t) exp(jwrt + jor(t)). (1)

Here, if the outputs of the k-th channel, which correspond
to f1(t) and fx(t), are assumed to be Ay (t) exp(jwit +
J61k(t)) and By (t) exp(jwit + j62x(t)), then instanta-
neous amplitudes Ay (¢) and By (t) can be determined by

Ap(t) = Sk(t)sin(bax(t) — dr(t))/sin bk (t), (2)
Bi(t) = Sk(t)sin(de(t) — 01x(t))/sinbk(t), (3)
where ek(t) = sz(t) — Hlk(t), Hk(t) % nm,n € Z, and

wy, is the center frequency of the k-th channel. Instanta-
neous phases 011 (t) and s (t) can be determined by
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where Yj(t) = /(24,(t) Bk (t))? — Zi(t)2/ Zi(t) and
Zi(t) = Sk(t)? — Ag(t)? — Bi(t)?. Hence, fi1(t) and
f2(t) can be reconstructed by using the determined pair of
[A(t) and 614(t)] and the determined pair of By (t) and
021 (t)] for all channels. However, Ag(t), Bi(t), 011(t),
and 02 (t) cannot be uniquely determined without some
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constraints as is easily understood from the above equa-
tions. Therefore, this problem is an ill-inverse problem.

To solve this problem, we have proposed a basic method
of solving it using constraints related to the four regu-
larities [5] and the improved method [6]. However, the
former cannot deal with the variation of the fundamental
frequency, although it can segregate the synthesized signal
from the noise-added signal. Additionally, for the later, it
is difficult to completely determine the phases, although
it can be segregated vowel from noisy vowel precisely at
certain amplitudes by constraining the continuity of the
instantaneous amplitudes and fundamental frequencies.

This paper proposes a new sound segregation method to
deal with real speech and noise precisely even in wave-



Table 1: Constraints corresponding to Bregman’s psychoacoustical heuristic regularities.

Regularity (Bregman, 1993)  Constraint (Unoki and Akagi, 1999)

(i) common onset/offset synchronous of onset/offset [Ts — Tkon| < ATs, [Te — Tk on| < ATw
(ii) gradualness of change piecewise-differentiable polynomial dAg(t)/dt = Cy r(t),d01x(t)dt = Dy r(t)
approximation dFy(t)/dt = Eg r(t)
(smoothness) (spline interpolation) oA = f [A(R+1) 2dt = min
[9““”( )]%zt = min (new)
(iii) harmonicity multiples of the fundamental frequency n X FO (t), n=12---,Ng,
(iv) changes occurring in correlation between the instantaneous H:::Eg\\ ~ fo%gu , k#£¢
the acoustic event amplitudes
E Fo-Estimation block fluctuation of Fy(t) behaves like a stair shape and the
: temporal differentiation of Fy(t) is zero at any segment.
: Sk(t) A(t), B1x(t) . Therefore, this paper assumes that Eg g(¢) = 0 in Table
£1(t) ! _ N e N Grouping) 1) 1 (ii) for a segment. Let the length of the above segment
e | Aoy S s paration block be Ty, —T},—1, where T}, is the continuous point of Fy(t).
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Figure 1: Auditory sound segregation model.

forms, by using constraints on the continuity of instanta-
neous phases as well as constraints on the continuity of
instantaneous amplitudes and fundamental frequencies.

2. AUDITORY SOUND
SEGREGATION MODEL

In this paper, it is assumed that the desired signal f(¢) is
a harmonic complex tone, where Fy(¢) is the fundamental
frequency. The proposed model segregates the desired
signal from the mixed signal by constraining the temporal
differentiation of Ay(t), 61x(t), and Fy(t).

The proposed model is composed of four blocks: an auditory-
motivated filterbank, an Fj estimation block, a separation
block, and a grouping block, as shown in Fig. 1. Con-
straints used in this model are shown in Table 1.

2.1. Auditory-motivated filterbank

The auditory-motivated filterbank decomposes the observed
signal f(t) into complex spectra X (t). This filterbank
is implemented as a constant QQ gammatone filterbank,
constructed with K = 128, a bandwidth of 60-6000 Hz,
and a sampling frequency of 20 kHz [5]. Sk (t) and ¢y (t)
are determined by using the amplitude and phase spectra
defined by the wavelet transform [5].

2.2. F, estimation block

The Fj estimation block determines the fundamental fre-
quency of fi(t). This block is implemented as the Comb
filtering on an amplitude spectrogram Sy (¢)s [6]. Since
the number of channels in the Xj(¢) is finite, the es-
timated Fp(t) takes a discrete value. In addition, the

The grouping block determines the concurrent time-freque-
ncy region of the desired signal using constraints (i) and (i-
ii) in Table 1, and then reconstructs the segregated instan-
taneous amplitude and phase using the inverse wavelet
transform [7]. f1(t) and f2(t) are the reconstructed f; (t)
and fa(t). Constraint (i) is implemented by compar-
ing the onset/offset (1% on, Ik o) of Xj(t) with the on-
set/offset (I, 1) of X;(t) corresponding to Fo(t), where
ATs = 25 msec and ATg = 50 msec [7]. Constraint (iii)
is implemented by determining the channel number cor-
responding to the integer multiples of F(t).

2.4. Separation block

The separation block determines Ag(t), Bi(t), 61x(t),
and 6oy, (t) from Sy, (t) and @y (t) using constraints (ii) and
(iv) in the determined concurrent time-frequency region.
In this paper, the improvement of the auditory sound seg-
regation model is to reconsider the constraints on the con-
tinuity of 614 (t) as well as the constraints on the conti-
nuity of Ag(t) and Fy(t). Constraint (ii) is implemented
such that Cy r(t) and Dy r(t) are linear (R = 1) poly-
nomials, in order to reduce the computational cost of esti-
mating Ck gr(t) and D g(t). In this assumption, A (t)
and 015(t), which can be allowed to undergo a temporal
change in region, constram the second—order polynomlals
(Ak; ka 1 dt + C]Ic o and 91k ka 1
ch,o)- Then, substltutmg dAk( )/dt = C’kyg( ) into Eq.
(2), we get the linear differential equation of the input
phase difference 0y (t) = 021 (t) — 611 (¢). By solving this
equation, a general solution is determined by

B Sk (t) sin(¢n () — O1x ()
Gk(t) = arctan (Sk(t) ICC:OS(QSk(t)Ii glk(t))k+ Ck(t)) 3

where C]c = — f Clc R - Ck:,(] = _Ak(t> [7].

The signal flow of the separation block is shown in Fig.
2. In the segment T} — T} _1 which can be determined
by EO,R(t) =0, Ak(t), Bk(t), 91k(t), and 92k(t) are
determined by the following steps. First, the estimated
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Figure 2: Signal processing of a separation block.

regioris, ékyo(t) — Pk(t) < Ck,l(t)AS ékyg(t) + Pk(t)
and Dy o(t) — Qr(t) < Dy.1(t) < Dyo(t) + Qi(t), are
determined by using the Kalman filter, where ék70 (t) and
Dy.o(t) are the estimated values and Pg(t) and Q(t) are
the estimated errors. Next, the candidates of C 1(t) at
any Dy, 1 (t) are selected by using the spline interpolation
in the estimated error region. Then, CA’kyl (t) is determined
by using

A < A/W Ak >

Cra= arg max e
Cr,0—Pr<Ck,1<Ch o+Ps ||Ak||||AkH

where Ay, (t) is obtained by the spline interpolation and

Ap(t) is determined in across-channel that satisfies con-
straint (iii). Finally, Dy 1(t) is determined by using

< Ay, Ay >
arg max —_—

Des— A >
Dk,0—Qr<Dk,1<Dk,0+Qk ||Ak||||AkH

Since f4(t) and 0, (t) are determined from Dy, 1(t) and
Cl,1(t), Ak(t), Bi(t), and 625 (t) can be determined from
Eq. (2), Eq. (3), and 01 (t) = 0% (t) + 014 (t), respective-
ly.

3. SIMULATIONS

To show that the proposed method can segregate the de-
sired signal f(t) from a noisy signal f(t) precisely even
in waveforms, we ran three simulations using the follow-
ing signals:

(a) noisy synthesized AM-FM harmonic complex tone [6];
(b) noisy real vowel (/a/, /i/, /u/, /e/, /o/); and

(c) noisy real continuous vowel (/aoi/),

where noise was a pink noise and the SNRs of noisy signals
were from 5 to 20 dB in 5-dB steps. The speech signals
were the Japanese vowels of four speakers (two males and
two females) in the ATR-database [8].

We used segregation accuracy to evaluate the segregation
performance of the proposed method, as defined by

foT fi(t)?dt
IT () — Fa(e))2at

101og;, (dB). (9

Next, to show the advantages of the constraints in Table
1, we compared the performance of our method in the fol-
lowing three conditions:

(1) extract the harmonics using the Comb filter and pre-
dict Ak (t) and 01y (t) using the Kalman filtering;

(2) extract the harmonics using the Comb filter; and

(3) do nothing.

Here, condition 1 corresponds to the smoothness of con-
straint (ii) being omitted; condition 2 corresponds to con-
straints (ii) and (iii) being omitted; and condition 3 cor-
responds to no constraints being applied at all.

3.1. Overview of signal processing

An overview of signal processing of the proposed model
is shown in Fig. 3. First, noisy vowel /a/ f(t) shown in
Fig. 3 A (the SNR of f(¢) is 10 dB) for simulation 2 is
decomposed into Sk (t) and ¢ (t) as shown in Fig. 3 B
and C, respectively. Next, Fy(t) is estimated as shown
in Fig. 3 D. The concurrent time-frequency region of the
desired signal f1(t) is determined using constraints (i) and
(iii) as shown in Fig. 3 E and F. Finally, the instantaneous
amplitudes and the instantaneous phases of two signals
are determined from Sy (t) and ¢ (t) using constraints (ii)
and (iv). The determined Ay(t) and 614 (t) are shown in
Fig. 3 H and I, respectively. The segregated signal fi (t)
is shown in Fig. 3 J.

3.2. Results and considerations

The segregation accuracy of the three simulations and the
four comparisons is shown in Fig. 4. In this figure, the
bar height shows the mean of segregation accuracy and
the error bar shows the standard deviation of segregation
accuracy. The results show that the segregation accuracy
using the proposed model was better than that using the
other three methods. These results show that the pro-
posed model can segregate the desired vowel from a noisy
vowel precisely even in waveforms. In addition, the result
of the comparison between the proposed model and (2)
shows that the simultaneous signals can be precisely seg-
regated using the instantaneous amplitude and phase. As
a result of comparison between the proposed method and
(3), improvements in segregation accuracies at the SNR
of 5 dB for simulations 1, 2, and 3 are about 10 dB, about
9 dB, and about 7 dB, respectively.

4. CONCLUSIONS

We have proposed a new method of extracting the desired
speech from noisy speech precisely even in waveforms by
using constraints on the continuity of the instantaneous
phases as well as constraints on the continuity of the in-
stantaneous amplitudes and the fundamental frequency.

To show that the proposed model can extract real speech
from noisy speech precisely even in waveforms, we demon-
strated one evaluation and three simulations of segregat-
ing two acoustic sources. The result of evaluation showed
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Figure 3: Overview of signal processing of the proposed
model.

that all constraints related to the four regularities are use-
ful in order to segregate the desired vowel from noisy vow-
el. The results of the three simulations showed that the
proposed method can segregate the desired vowel from
noisy vowel precisely even in waveforms. It was also shown
that the proposed method can precisely segregate the de-
sired signal from the simultaneous signals using the in-
stantaneous amplitude and phase.
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