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Abstract

This paper proposes a method of extracting the desired signal from a noisy signal, address-
ing the problem of segregating two acoustic sources as a model of acoustic source segregation
base on Auditory Scene Analysis. Since the problem of segregating two acoustic sources is
an ill-inverse problem, constraints are needed to determine an unique solution. The pro-
posed method uses the four heuristic regularities proposed by Bregman as constraints and
uses the instantaneous amplitude and phase of noisy signal components that have passed
through a wavelet filterbank as features of acoustic sources. Then the model can extracts
the instantaneous amplitude and phase of the desired signal. Simulations were performed
to segregate the harmonic complex tone from a noise-added harmonic complex tone and
to compare the results of using all or only some constraints. The results show that the
method can segregate the harmonic complex tone precisely using all the constraints related

to the four regularities and that the absence some constraints reduces the accuracy.



Résumé

Cet article propose une méthode pour extraire le signal voulu a partir d'un signal bruité
addressant ainsi le probleme de ségrégation de deux sources acoustiques comme modele
de ségrégation de sources acoustiques basé sur 'analyse de la sceéne auditive. Comme le
probleme de ségrégation de deux sources acoustiques est un probleme mal-inversé il est
nécessaire d’utiliser des contraintes afin de déterminer une solution unique. La méthode
proposée adopte les quatres régles proposées par Bregman comme contraintes physiques
et utilise comme propriétés des sources acoustiques, I’amplitude instantannée et la phase
des composants du signal bruité apres son passage par une banque de filtres. Le modele
proposé peut alors extraire l'amplitude instantannée et la phase du signal voulu. Des
simulations pour la ségrégation du ton harmonique complexe a partir d'un ton harmonique
bruité et la comparaison des résultats obtenus lors de l'utilisation de tous ou d’'une partie
des contraintes ont été effectuées. Les resultats montrent que la méthode proposée peut
effectuer une ségrégation précise du ton harmonic complexe lors de I'utilisation de toutes les
contraintes en relation avec les quatres régles de Bregman et une diminution de la précision

lors de T'utilisation de seulement une partie de ces contraintes.



Zusammenfassung

In der vorliegenden Abhandlung wird ein Verfahren zur Extraktion des gewiinschten Sig-
nals aus dem verrauschten Signal vorgeschlagen, um so das Problem der Trennung von
zwei akustischen Signalquellen in Form eines Modells fiir Akustiksignalquellen-Trennung
auf der Basis von 7 Auditory Scene Analysis” zu 16sen. Da das Problem der Trennung von
zwei akustischen Signalquellen ein inverses ILL-Problem darstellt, sind zur Ermittlung ein-
er eindeutigen Losung Einschriankungen erforderlich. Das vorgeschlagene Verfahren beruht
auf den vier heuristischen Regelméaigkeiten von Bergman als Einschrankungen und macht
sich als Merkmale von akustischen Signalquellen die Momentanamplitude und Phase von
Rauschsignalkomponenten zunutze, die eine ” Wavelet”-Filterbank passiert haben. AnschlieGend
kann das Modell die Momentanamplitude und Phase des gewiinschten Signals extrahieren.
Es werden Simulationen zur Trennung einer komplexen Oberwelle von einer verrauschten
komplexen Oberwelle sowie der Vergleich der Resultate unter Anwendung aller bzw. einiger
Einschrankungen durchgefuhrt. Die Ergebnisse zeigen, dag mit Hilfe des vorgeschlagenen
Verfahrens eine prizise Trennung von komplexen Oberwellen mit allen Finschrankungen
in bezug auf die vier Regelmafigkeiten moglich ist und daf unter dem Fehlen bestimmter

Einschrankungen die Genauigkeit leidet.

Keyword

auditory scene analysis, Bregman’s regularities, the problem of segregating two acoustic

sources, constant () gammatone filterbank



1 Introduction

The problem of segregating the desired signal from a noisy signal is an important issue not
only in robust speech recognition systems but also in various types of signal processing.
It has been investigated by many researchers, who have proposed many methods. For
example, in the investigation of robust speech recognition [Furui and Sondhi, 1991 |, there
are noise reduction or suppression [Boll, 1979 | and speech enhancement methods [Junqua
and Haton, 1996 |. In the investigation of signal processing, there is signal estimation using
a linear system [Papoulis, 1977 ,Shamsunder and Giannakis, 1997 | and signal estimation
based on a stochastic process for signal and noise [Papoulis, 1991 |.

However, in practice, it is difficult to segregate each original signal from a mixed signal,
because this problem is an ill-inverse problem and the signals exist in a concurrent time
frequency region. Therefore, it is difficult to solve this problem without using constraints.

On the other hand, the human auditory system can easily segregate the desired signal in
a noisy environment that simultaneously contains speech, noise, and reflections. Recently,
this ability of the auditory system has been regarded as a function of an active scene analysis
system. Called “Auditory Scene Analysis (ASA)”, it has become widely known as a result
of Bregman’s book [Bregman, 1990 |. Bregman reported that to perform the problem of
ASA the human auditory system uses four psychoacoustically heuristic regularities related

to acoustic events:
(i) common onset and offset,
(ii) gradualness of change,
(iii) harmonicity, and
(iv) changes occurring in the acoustic event [Bregman, 1993 |.

Some ASA-based investigations have shown that it is possible to solve the segregation
problem by applying constraints to sounds and the environment. These approaches are
called “Computational Auditory Scene Analysis (CASA).” Some CASA-based segregation
models already exist. There are two main types of models of auditory segregation, based
on either bottom-up or top-down processes.

Typical bottom-up models include an auditory segregation model based on acoustic
events [Brown, 1992 | Cooke, 1993 |, a concurrent harmonic sounds segregation model
based on the fundamental frequency [de Cheveigné, 1993 ;de Cheveigné, 1997 |, and a sound

source separation system with the ability of automatic tone modeling [Kashino and Tanaka,



1993 ]. Typical top-down models include a segregation model based on psychoacoustic
grouping rules [Ellis, 1994 , Ellis, 1996 | and a computational model of sound segregation
agents [Nakatani et al., 1994 | Nakatani et al., 1995a , Nakatani et al., 1995b |. All these
segregation models use regularities (i) and (iii), and the amplitude (or power) spectrum
as the acoustic feature, so, they cannot completely extract the desired signal from a noisy
signal if the signal and noise exist in the same frequency region.

We think that, using the same approach as in CASA, it should be possible to solve
the signal segregation problem (ill-problem) uniquely, using constraints related to the four
regularities. In addition, we have discussed the need to use not only the amplitude spectrum
but also the phase spectrum in order to completely extract the desired signal from a noisy
signal in which the signal and noise exist in the same frequency region [Unoki and Akagi,
1997a |. There have been two investigations based on this idea.

As the first step, the problem of segregating a sinusoidal signal from a noise-added
sinusoidal signal can be solved using constraints related to two of the four regularities,
(ii) and (iv) [Unoki and Akagi, 1997a |. Then, the problem of segregating an amplitude
modulated (AM) complex tone from noise-added or concurrent AM complex tones can be
solved using the four regularities [Unoki and Akagi, 1997b |.

This paper introduces the general problem of segregating two acoustic source as summary
of the above results. Then it proposes a method of extracting the desired signal (harmonic

tone) from a noisy signal (noisy harmonic tone) based on auditory scene analysis.

2 Auditory segregation model

In this paper, we define the problem of segregating two acoustic sources as “segregating a
mixed signal into the original signal components, where the mixed signal is composed of two
signals generated by any two acoustic sources”. The essential idea of the proposed model
is that (a) the observed signal is decomposed into its frequency components by an auditory
filterbank (frequency decomposition), (b) components of each signal are segregated from
the decomposed components, and (c¢) components of each signal are grouped by a grouping
process into each signal. The auditory segregation model is shown in Fig. 1. This process

is formulated as follows.



2.1 Formulation of the problem of segregating two acoustic

sources

First, only the mixed signal f(t), where f(t) = fi(t) + f2(f), can be observed in the
proposed model. Here, fi(t) is the desired signal and f»(t) is a noise or the other signal.
The observed signal f(t) is decomposed into its frequency components by an auditory-
motivated filterbank (the number of channels is K). The output of the k-th channel Xj(t)

is represented by

Xp(t) = Xip(t) + Xox(t) (1)
= Sk(t) exp(jwit + jor(t)), (2)

where X ;(t) and X5 (t) are components of fi(t) and fa(t) that have passed through the
filterbank, respectively.
Second, the outputs of the k-th channel, which correspond to fi(t) and f5(t), are assumed
to be
Xi1x(t) = Ag(t) exp(jwit + jO1x(t)) (3)

and
Xo i (t) = Bi(t) exp(jwit + j021(t))- (4)

Here, wy, is the center frequency of the k-th channel (the auditory filter) and 0yx(t) and 0oy (¢)
are the instantaneous input phases of fi(t) and fa(t), respectively. Using this assumption,
the instantaneous amplitude S(t) and the instantaneous output phase ¢ (t) are represented
by

= \JAZ(1) + 2A4(£) Bi(t) cos 6(1) + B2(1) (5)

and

¢r(t) = arctan <A"'(t) sin 615 (t) + By(t) sin O (2) )

6
Ap(t) cos O15(t) + By (t) cos 021 (t) (6)
Therefore, the instantaneous amplitudes of the two signals Ay (t) and By(t) can be deter-

mined by

and
Si(t) sin(og(t) — 01(1))
sin 05 (1) ’ ®)

where 0x(t) = Oax(t) — O1x(t) and Oy (t) # nmw,n € Z. Focusing on the output value of the

By(t) =

k-th channel at time ¢, the relationships between every instantaneous amplitude and every

instantaneous phase are shown in Fig. 2.



Hence, since the instantanecous amplitude Si(¢) and the instantaneous output phase ¢ (t)
are observable (see Sec. 3.1.1), and if the instantaneous input phases 015 (t) and 6o () are
determined, then Ay (t) and Bj(t) can be determined by the above equations.

Finally, fi(t) and f5(t) can be reconstructed by using the grouping of the instantaneous
amplitude and the instantaneous phase for all channels. Thus, f 1(t) and fz(t) are the
reconstructed fi(t) and fa(t), respectively.

However, in the above formulation, it is difficult to uniquely and simultaneously deter-
mine the instantaneous amplitudes (Ag(t) and Bi(t)) and the instantaneous phases (01 (t)
and 0o (1)) using Sk (t) and ¢ (t), because there are currently no equations for determining
two such instantaneous phases and the segregation of two acoustic sources is an ill-inverse
problem. Therefore, in this paper, we try solving the problem of segregating two acoustic

sources by constraining the desired signal using the four regularities.

2.2 Assumption and constraints of the proposed model

In this paper, it is assumed that the desired signal fi(¢) is a harmonic complex tone,
consisting of the fundamental frequency Fy(t) and the harmonic components, which are
multiplies of Fy(t). The proposed model segregates the desired signal from the mixed
signal by constraining the temporal differentiation of the instantaneous amplitude, the
instantaneous phase, and the fundamental frequency. Here, the relationship between the
four regularities [Bregman, 1993 | and the constraints concerned is shown in Table 2. These

constraints are defined as follows.

| Tables 1 and 2]

[Constraint1] (Gradualness of change (polynomial approximation)) Temporal d-
ifferentiations of the instantaneous amplitude Ay (t), the instantaneous phase 61 (t),
and the fundamental frequency Fy(t) must be represented by an R-th-order differen-

tiable piecewise polynomial as follows:

dA(2)

i Cr.r(t), (9)
dOyx(t)
o = Dyr(t), (10)
and
Bl _ g, (11)

dt



where Cy g(t), Dgr(t), and Epg(t) are R-th-order differentiable piecewise polyno-
mials. Here, Ag(t), 01x(t), and Fy(t) are represented by Ag(t) = [ Cy r(t)dt + Cip,
61i(t) = [ Di,r(t)dt + Dy, and Fy(t) = [ Eor(t)dt + Egp, respectively. O

[Constraint2] (Harmonicity) Fy(¢) is the fundamental frequency, and Ng, is the num-

ber of harmonics of the highest order. The harmonic component must satisfy
n - Fo(t), n=12---,Ng,. (12)
O

[Constraint3] (Common onset and offset) Suppose that Ts and Tk are the onset and
offset of the fundamental component. If the signal component obtained by the k-
th channel is the signal component generated by the same acoustic source (that
is, harmonic components), then onset T} o, and offset T} og determined by the k-th
channel must coincide with Ts and Tg respectively. That is, the differences in onset

and offset must satisfy

Ts — Thon| < ATg (13)
and

|Te — Thone| < ATE, (14)
respectively. O

[Constraint4] (Gradualness of change (smoothness)) Suppose that the amplitude
envelope Ag(t) is defined in the closed-duration [t,,ty] and satisfies constraint 1. If

Ak(t) is as smooth as possible, then the following integral must be minimized:

t
o= [P (15)
ta
where A,(CRH)(t) is determined by Cj, g(t) in constraint 1. O

[Constraint5] (Correlation between the instantaneous amplitudes Ax(t)) The nor-
malized amplitude envelope of the output of the k-th channel must approximate that
of the /-th channel as follows:

Art) At
[A@N 1A

where || - || is the norm symbol. The norm of Ay(t), determined by ||Ag(?)|], is

determined as || Ax(t)|| = \/f¢ |Ar(7)|2dT. O

-y (16)
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Substituting constraint (9) in Eq. (7), we get the linear differential equation of the
instantaneous input phase difference 0(t). By solving this linear differential equation, we

can determine 6(t) as follows.

[Lemmal]| From constraint 1, a general solution of the input phase 6(t) is determined by

- Su() sin(n(t) — Oux(t))
Ok(t) = arctan (Sk(t) cos(dn(t) — Oan(D) + Ck(t)> ) (17)

where Ci(t) = — [ Cy r(t)dt — Cro = —Ak(t). The Ci(t) is called the “undetermined

function”.

(Proof) See appendix A. O

From Lemma 1, if Ck(t) is determined, then 0x(t) is uniquely determined by the above
equation. Moreover, if Dy, z(t) is determined, then the two instantaneous input phases can
be determined using 0x(t) and Dy, g(t). Therefore, if the two R-th-order polynomials Cy, r(?)
and Dy, g(t) are determined as some kind of optimization problem, the two instantaneous
amplitudes and the two instantaneous phases can be estimated. Although it is possible to
estimate the coefficients Cy,(t) and Dy, (t), r = 0,2,= ---, R, there is a problem that the
computational cost of estimating two polynomials increases greatly.

In this paper, in order to reduce the computational cost, we assumed that Cy g(t) is a
linear (R = 1) polynomial (dAg(t)/dt = Cy1(t)) and Dy, (1) is zero (db1x(t)/dt = Dy, = 0)
in constraint 1. In this assumption, the instantaneous amplitude Ag(¢) which can be
allowed to undergo a temporal change in region, constrains the second order polynomial
(Ak(t) = [ Cra(t)dt+Ci). Moreover, the instantaneous phase 61x(t), which is constrained
(i.e. 61x(t) = Dyp), cannot be allowed to temporarily change. Here, if the number of
channels K is very large, each frequency of the signal component that passed through the
channel approximately coincides with the center frequency of each channel. Even if the
above condition is false, its frequency difference can be represented by Dy .

This paper solves the problem of segregating the desired signal fi(¢) from the mixed

signal, in which noise f5(t) is added to the localized fi(t), under the above assumption.

2.3 Overview of the proposed model

An overview of signal flow in the proposed model is shown in Fig. 3.
First, this model can observe the mixed signal f(¢) (Fig. 3. A). The observed signal is

decomposed into an instantaneous amplitude Si(t) and an instantaneous phase ¢ (t) using
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an auditory-motivated filterbank (Fig. 3. B, C). Next, the fundamental frequency Fy(t) of
the desired signal is determined using an amplitude spectrogram (or an other method) (Fig.
3. D). Next, the concurrent time-frequency region of the segregation target is determined
using grouping constraints. The frequency region, in which harmonic exist, is determined
using the fundamental frequency Fy(t) and the constraint of harmonicity (Fig. 3. E, and
focus on a-a’) . The time region in which harmonics exist is determined using the constraint
of common onset and offset (Fig. 3 F, and focus on b-b’).

Next, in the determined concurrent time-frequency region, the instantaneous amplitude
Ag(t) and 61(t) of the desired signal f;(t) are determined from the instantaneous amplitude
Sk(t) and the instantaneous output phase ¢g(t). These are determined by estimating
Ci1(t) and Dy, which are constraining Ay(t) and 60y,(t), respectively (Fig. 3. H, I). In
particular, Cy 1 (t) is estimated using the constraints of smoothness and correlation between
the instantaneous amplitudes Ay (t). And Dy is estimated using the estimated Cj 1 (t) and
constraint of correlation between the instantaneous amplitudes Ag(t).

Finally, the segregated signal is reconstructed the grouping the instantaneous amplitude

Ak (t) and the instantaneous input phase 015 (t) (Fig. 3. J).

3 Algorithm implementation

3.1 An auditory-motivated filterbank

In this investigation, a filterbank is implemented considering two points: (1) consideration
of the properties of the auditory system and, (2) detection of a discontinuous point dealing
with the complex spectrum. In order to construct a constant Q filterbank, this paper uses
the gammatone filter as an analyzing wavelet.

The gammatone filter, which is an auditory filter designed by Patterson [Patterson et
al., 1995 |, simulates the response of the basilar membrane. Its impulse response is given
by

gt(t) = AtN ~texp(—27bERB( fo)t) cos(27 fot), t >0, (18)

where A, by, and N are parameters, and At ~texp(—27b;ERB(fo)t) is the amplitude
term represented by the Gamma distribution, f; is the center frequency, and ERB(fy) is

an equivalent rectangular bandwidth in fy(¢). In addition, amplitude characteristics of the
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gammatone filter are represented approximately by

i(f=fo) 17"
GT(f)zller] ) 0<f<oo, (19)
where GT'(f) is the Fourier transform of gt(t).

In order to determine phase information, let the analyzing wavelet be the extend gamma-
tone filter in Eq. (18) using the Hilbert transform. This analyzing wavelet is represented
by

Y(t) = AtV exp(j2r fot — 27b;ERB(fo)t), (20)

where fo = 600 Hz, N = 4, and by = 0.25. Here, the bandwidth of the () becomes a

quarter of the bandwidth of the auditory filter (about 1/4 ERB). The characteristics of the
analyzing wavelet ¥ (t) of Eq. (20) are shown in Fig. 4 .

Next, the wavelet filterbank is designed using the wavelet transform (see appendix B).

Here, let the wavelet transform of f(t) be

f(a,0) = | f(a, b)] exp(j arg(f(a. b)), (21)

where |f(a,b)| is the amplitude spectrum and arg(f(a, b)) is the phase spectrum; a is the
scale parameter and b is the shift parameter.
Finally, an auditory-motivated filterbank is designed with the conditions shown in Table.

3. The frequency characteristics of the wavelet filterbank are shown in Fig. 5.

| Figs. 4 and 5|

3.1.1 Calculation of instantaneous amplitude Si(¢) and instantaneous output
phase ¢;(t)

The instantaneous amplitude Sk (t) of Eq. (5) and the instantaneous output phase ¢y () of

Eq. (6) can be calculated using the following lemma.
[Lemma2] The instantaneous amplitude Si(¢) is calculated by
Sit) = 1f(@* %0, a=at"F b=t (22)

where | f (a,b)| is the amplitude spectrum defined by the wavelet transform. The

instantaneous output phase ¢y (t) is calculated by
t ~
or(t) = /0 (% arg (f(o/ﬂ—%,r)) — wk) dr,a = ak_%, b=t, (23)

where arg(f(a,b)) is the phase spectrum defined by the complex wavelet transform.
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Proof. See appendix C. O

3.2 Grouping block

This section describes the method of estimating the fundamental frequency, constraint 2
of harmonicity, and constraint 3 of common onset and offset, in order to constraint the

time-frequency region in which the desired signal exists.

3.2.1 Determination of the fundamental frequency

In this paper, the fundamental frequency of the complex tones is estimated using TEM-
PO (a method of time-domain excitation extraction based on a minimum perturbation
operator) [Kawahara, 1997 |.

Next, consider the constraint of gradualness of change in Eq. (11) for the estimated
fundamental frequency Fy(t). The estimated Fy(t) can take continuous values. However,
since the number of channels in the auditory-motivated filterbank is finite, the center
frequencies of the auditory-motivated filterbank cannot take continuous values. Therefore,
it is difficult to deal with continuous temporal variation of Fy(¢). In this paper, we assume
that Ep g(t) = 0 in Eq.(11) for a small segment, means that Fy(t) is constant in a small
segment. Here, the above small segment is determined using the following equation, as the
duration for which the temporal variation of Fy(t) has the same variance as Fy(t).

1 T _
—— [ R - RO dt < (AR, (24)
Th —Th—1 J1 4

where the length of the small segment is T}, — Tj,—1 and A(Fp)? is the variance of Fy(t). In
this paper, AFy =1 Hz.

The relationship between Fy(t) and the small segments using constraint 1 is shown in Fig.
6. For Fy(t), as shown by the dotted line in Fig. 6, segregated duration (Fy(t) duration) is
applied to small segments from Eq. (24). The number of split segments is H — 1.

3.2.2 Grouping constraints

For the fundamental frequency Fp(t) in each small segment, the constraint of harmonicity,

and the constraint of common onset and offset are implemented as follows.
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First, from constraint 2, the channel number ¢ of X,(¢), in which the harmonic compo-

nents exist in the output of the /-th channel, is determined by

0 K Fog(n'Fo(t)/fo)
log o

9 “7 ’)’L:172,"',NF0, (25)

where « is the scale parameter shown in Table 2 and [-] is the ceil symbol, meaning the
approximation of the closest integer value toward positive infinity.

Next, from constraint 3, let the onset and offset of the fundamental component, Ts and
Tg, be Ts = T},_1 and Tg = T}, respectively. Moreover, we assume that ATg = 50 msec
and ATg = 100 msec. Here ATy is taken from the result of a psychoacoustical experiment
on the synchronism of onset [Kashino and Tanaka, 1994 |.

In this paper, onset Ty on and offset T} o in X (¢) are determined as follows.

1. Onset T} on is determined by the nearest maximum point of |d¢’“<t | (within 25 ms) to
dSk (t) .

the maximum point of |

2. Offset Ty o is determined by the nearest maximum point of |d¢’“(t | (within 25 ms) to
dSk(t) |

the minimum point of |

Here, constraint 2 acts on the signal component of fi(¢) in the log-frequency domain,

and constraint 3 acts the signal component of fi(¢) in the time domain.

3.3 Separation block

In the separation block, the instantaneous amplitude Ag(t) and the instantaneous input
phase 61;(t) are estimated from S (t) and ¢ (t) for the concurrent time-frequency region.

This is done by the following steps, which optimize Cj1(¢) and Dy .

Step. 1 Let Dy in Eq. (10) be any value within —7/2 < Dy o < 7/2.

Step. 2 Using the Kalman filter, determined the estimated region, which is ék,O(t) —
Pi(t) < Cra(t) < Crolt) 4+ Pe(t), where Cro(t) is the estimated value and Py(t) is

the estimated error.

Step. 3 Select candidates of Cj 1(t) using the spline interpolation in the estimated error
region Cro — Pr(t) < Cra(t) < Cro(t) + Pi(t).

Step. 4 Determine Cj1(¢) using the correlation between the instantancous amplitudes
Ax(t).
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Step. 5 Repeating Steps.1 to 4, determine Dy o using the correlation between the instan-

taneous amplitudes Ay(t)

Step. 6 Determine 6;(t) from Cy1(t) and determine 6y (¢) from Dyo. Then, determine
egk(t) = Hk(t) + le(t).

Step. 7 Determine Ay (t) and By(t) from Egs. (7) and (8), respectively.

3.3.1 Determination for the estimated region using the Kalman filter

In this section, we consider how to estimate Cy o from the observed component Xj(t) using
the Kalman filter. The estimation duration is [T},—1, T,]. It is then decomposed into discrete
time ¢, =m-At, m=0,1,2,---, M, where the sampling period is At = 1/f,, where f is

the sampling frequency. Here, let the temporal variation of Cyo(t) at discrete time t,, be

Ok’o(tm+1) = Ck’o(tm)AOk(tm) + Wiy, (26)
Cro(tm) — Cro(tm-1)
Croltn) , (27)

where to = Tj,—1 and ty = t,. It is assumed that Cyo(t,,) times ACk(t,,), and that the

ACh(tn) = 1+

variation error is represented by white noise with mean 0 and variance o,,.

Next, for the system of the Kalman filtering problem:

Xmt1 = FpXm + Gpwy, (state) (28)

Vm = Hy, %, + v, (observation), (29)

applying Eq. (26) to Eq. (28) and applying Eq. (2) to Eq. (29). The parameters in Eqs.
(28) and (29) are shown in Table 4.

Next, performing the Kalman filtering (see Appendix D) according to Eqgs. (28) and
(29), we obtain the minimal-variance estimated value [X,,,,| and covariance matrix |ﬁ]m|m|
at discrete time t,,. As a result, the estimated C‘ho(t) and the estimated error Py(t) are
determined by Cy(t) = —|Xpjm| and Py (t) = |ﬁ3m|m|, respectively. Therefore, the estimated

error region for Cy () is

Cro(t) — Pu(t) < Cra(t) < Crolt) + Pr(t). (30)
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3.3.2 Candidate selection of C};(t) using the spline interpolation

In order to determined whether Ay () satisfied Eq. (15), consider the selection of candidates

for Ai(t). Suppose that A,(ﬂRH)(t) is the instantaneous amplitude of fi(t) given by any

Cy.r(t), and 71,72, ---,7; are within the opened-duration (t,,t,), where t, < 1 < --- <
7; < tp. In addition, suppose that Aj; = A,(CRH)(tZ-) is the value of the instantaneous

amplitude at time ;.

To estimate Cyq(t), where R = 1, that satisfies Eq. (15) we interpolate A,E.RH)(t),
where R = 1 and, A,ERH)(t) = Agi it = 1,2,--+, 1 in [te, ty). According to constraint 4,
the smoothest interpolation function is the (2R + 1)th-order spline function. This spline
function is unique [de Boor, 1978 |.

As shown in Fig. 7, first we determine candidates of Cj () using the spline function
within the estimated error region: Co(t) — Py(t) < Cp1(t) < Cro(t) + Pe(t). Then, select
a correct solution from the candidates of Cy1(t), we can uniquely determine the smoothest
Ai(t) from Cy 1 ().

In this paper, we use the cubic spline function (2R + 1), where R = 1. The interpolated
region is from t, = Tj—1 to t, = T},. The interpolated interval is AT = 15 X (27 /wy) At.
Therefore, I = [(t, — t,)/AT].

3.3.3 Determination of C ;(¢) using correlation between the instantaneous am-

plitudes

Select an optimal solution from the candidates of Cj 1(¢) using Eq. (16) in constraint 5.
This process is done by selecting Cy 1(t) when the correlation between the instantaneous
amplitude (Ag(t) and A,(t)) is maximum at any Cy 1(¢) within the estimated error region.
< Ap, A >

Cri = arg max -

. g —, (31)
Cro—Py<Ci,1<Cro+Py ||Ax|||| Akl|

where < - > is an operation of the inner product, flk(t) is the instantaneous amplitude

obtained by interpolating Cy(t), and A (t) is the instantaneous amplitude determined as

1 Aq(t)
Nry i3, 1Al

Aw(t) (32)

where, L is the set symbol of ¢ that satisfies Eq. (12).
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3.3.4 Determination of Dy ((t) using correlation between the instantaneous

amplitudes

Setting Dy o to any value within [—x/2, 7/2], we can determine Cj;(t) at any Dy using
the above method. An optimal solution DM is determined by
< Ay, Ay >

Dyo= argmax -

& (3)
—m/2<Dios7/2 || A ||| Ag||

where flk(t) is the instantaneous amplitude determined by CA’M, and flk(t) is determined
by Eq. (32).

4 Simulations

We carried out three simulations on segregating two acoustic sources using noise-added
signal f(t), to show that the proposed method can extract the desired signal f;(t) from the

mixed signal f(¢). These simulations were composed as follows:
1. Extracting an AM complex tone from a noise-added AM complex tone.
2. Extracting one AM complex tone from mixed AM complex tones.
3. Extracting a speech signal (vowel) from a noisy speech.

In simulations 1 and 2 the fundamental frequency did not vary temporally, while in simula-
tion 3 it did. The purpose of simulation 1 was to examine the assumptions of the problem
of segregating two acoustic sources; the purpose of simulation 2 was to examine the case
in which the concurrent signal component exists in the same frequency region; and the
purpose of simulation 3 was to examine whether the proposed method can be applied the
problem of segregating a vowel from a noisy vowel.

We used two measures to evaluate the segregation performance of the proposed method.

One was the temporal average of the segregated error in terms of the instantaneous
amplitude Ag(t). The aim of using this measure was to evaluate the segregation in terms
of the amplitude envelope where signal and noise exist in the same frequency region. This

measure is called “Precision”, and is defined by

L (o St Ax(t)?
7l Gmg”zﬁmﬂw—ﬁamgdt (34
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where Ay (t) is the amplitude envelope of the original signal f1(t), and /Alk(t) is the amplitude
envelope of the segregated signal fl(t).

The other measure was the spectrum distortion. The aim of using this measure was
to evaluate the extraction of the desired signal f; (t) from noise-added signal f(t). This

measure is defined by

1E (sen B0
W ; ( 0logy, i) ; (35)
where [} (w) and ]:2‘1 (w) are the amplitude spectra of fi(¢) and fi(t), respectively. In the
above equation, the frame length is 51.2 ms, the frame shift is 25.6 ms, W is the analyzable
bandwidth of the filterbank (about 6 kHz), and the window function is Hamming.

Here, in the measure of precision, a higher value means high accuracy of segregation.
Conversely, in the measure of spectrum distortion, a lower value means high accuracy of
segregation.

Next, in order to show the advantages of the constraints shown in Table 2, we compare

the following conditions for the three simulations:

1. Condition 1: Extract the harmonics using the Comb filter and predict Ag(t) using
the Kalman filtering.

2. Condition 2: Extract the harmonics using the Comb filter.
3. Condition 3: Do nothing.

Here, condition 1 corresponds to constraint of gradualness of change (smoothness) being
omitted; condition 2 corresponds to constraints of gradualness of change (smoothness) and
harmonicity being omitted; and condition 3 corresponds to no constraints being applied at
all.

The evaluated value of the noise reduction is the improvement in the two measures

between using the proposed method and using condition 3.

4.1 Simulation 1

This simulation assumed that fi(¢) was an AM complex tone as shown in Fig. 8, where
Fo(t) = 200 Hz, Ng, = 10, and the tone’s instantaneous amplitude was sinusoidal (10 Hz),
and that fo(f) was bandpassed pink noise, having a bandwidth of about 6 kHz. Five types
of f(t) were used as simulation stimuli, where the SNRs of f(¢) ranged from 0 to 20 dB in

5-dB steps. The SNR shows the ratio of signal to noise in the concurrent time region.
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For example, when the SNR of f(¢) was 10 dB, as shown in Fig. 9, the proposed method
could segregate Ay (t) with high accuracy and could extract fi(¢), shown in Fig. 10, from
it. In this case, the precision for Ag(t) is shown in Fig. 11 (top panel). In addition, the
average SDs of f1(t) and f(t) for five simulations are shown in Fig. 11 (bottom panel). It
was possible to improve the precision by about 7.3 dB and the spectrum distortion by about
17.6 dB as noise reduction, comparing the proposed method with condition 3. Hence, the
proposed model could extract with high precision the amplitude information of signal fi ()
from a noise-added signal f(¢) in which the signal and noise were in the same frequency

region.

4.2 Simulation 2

This simulation assumed that fi(¢) was an AM complex tone the same as Fig. 8 and that
fa(t) was another AM complex tone, where Fy(t) = 300 Hz, Ng, = 10, and the tone’s
instantaneous amplitude was sinusoidal (15 Hz). Therefore, harmonics of fi(t) and fa(?)
in multiples of 600 Hz (for example, the third harmonic of fi(¢) and second harmonic of
f2(t)) exist in the same frequency region. Five types of f(t) were used as simulation stimuli,
where the SNRs of f(t) ranged from 0 to 20 dB in 5-dB steps.

For example, when the SNR of f(¢) was 10 dB, as shown in Fig. 12, the proposed method
could segregate Ay (t) with high accuracy and could extract fi(¢), shown in Fig. 13, from
the f(t), even when two components of the signals existed in the same frequency region. In
this case, the precision for Ay(t) is shown in Fig. 14 (top panel). In addition, the average
SDs of fi(t) and f(t) for five simulations are shown in Fig. 14 (bottom panel). Tt was
possible to improve the precision by about 3.1 dB and the spectrum distortion by about
7.2 dB as noise reduction, comparing the proposed method with condition 3.

Hence, just like the results of the previous simulations, the proposed model could also
extract with high precision the amplitude information of signal fi(¢) from a noise-added
signal f(¢) in which two AM complex tones existed in the same frequency region. Here,
comparing the results of the proposed method with condition 2, we see that the segregated

accuracy using the proposed method shoed more improvement with simulation 2.

Figs. 12 14
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4.3 Simulation 3

This simulation assumed that fi(tf) was a vowel /a/ synthesized by the log magnitude
approximation (LMA) [Imai et al., 1977 ,Imai, 1978 | as shown in Fig. 15, where averaged
Fy(t) = 125 Hz, jitter was 5 Hz (from 123 to 128 Hz), and f»(t) was bandpassed pink noise,
where the bandwidth was about 6 kHz. In this simulation, Ng, = 40. Five types of f(¢)
were used as simulation stimuli, where the SNRs of f(¢) ranged from 0 to 20 dB in 5-dB
steps.

For example, when the SNR of f(¢) was 10 dB as shown in Fig. 16, the proposed method
could segregate Ay(t) with high accuracy and could extract f1 (), shown in Fig. 17, from
f(t). In this case, the precision for Ay(t) is shown in Fig. 18 (top panel). In addition, the
average SDs of fi(t) and f(t) for five simulations are shown in Fig. 18 (bottom panel).
It was possible to improve the precision by about 4.8 dB and the spectrum distortion by
about 7.3 dB as noise reduction, comparing the proposed method with condition 3. Here,
comparing the amplitude spectrum of original signal fi(t) with that of fi (t) or f(t), the
proposed method could clearly reduce the noise-component from the observed amplitude
spectrum, as shown in Fig. 19. In this figure, the amplitude spectra are shown in one
frame in middle point of signal duration. Hence, the proposed model could also extract
with high accuracy the amplitude information of speech fi(t) from a noisy speech f(t) in
which speech and noise existed in the same frequency region. Hence, this method can be

applied in cases where a speech signal is to be extracted from noisy speech.

4.4 Comparison the proposed model with the other method

We compared the proposed method and the other method (under three conditions) for the
above three simulations. As shown by the results of Figs. 11, 14, and 18, the segregation
accuracy using the proposed method was better than the other three conditions. Comparing
the proposed method and condition 1 shows the advantage of the constraint of gradualness
of change (smoothness). Comparing the proposed method and condition 2 shows the
advantage of constraining the gradualness of change (smoothness) and harmonicity and
also shows the segregation accuracy in the same frequency region in which concurrent
harmonic components exist. Comparing the proposed method and condition 3 shows the
improved accuracy of the proposed method. The result for these three simulations and

three conditions show that the proposed method can segregate the desired signal from a
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mixed signal, with about 4 dB better precision and about 10 dB improvement in spectrum
distortion.
As the above results, the problem of segregating the desired vowel from noisy vowel,

using constraints related to Bregman’s regularities is examined in this section.

5 Conclusions

This paper proposed a method of extracting the desired signal from a noisy signal, ad-
dressing the problem of segregating two acoustic sources as a model of acoustic source
segregation based on Auditory Scene Analysis. The problem of segregating two acoustic
sources, discussed here, is an ill inverse problem in which the instantaneous amplitude and
the instantaneous phase of the desired signal must be determined using the instantaneous
amplitude and the instantaneous phase of the observed signal. This method uses the in-
stantaneous amplitude and the instantaneous phase of signal component passed through
a wavelet filterbank. It can solve this problem using constraints, which are related to the
four heuristic regularities proposed by Bregman.

As an example of segregation using the proposed method, we demonstrated three simu-

lations of segregating two acoustic sources. These simulations were:
1. Extracting an AM complex tone from a noise-added AM complex tone.
2. Extracting one AM complex tone from mixed AM complex tones.
3. Extracting a speech signal from a noisy speech.

In these simulations, two measures were used to evaluate the proposed method. One was
precision, which is the temporal average of the segregated error for Ag(t) and the other
was the spectrum distortion for the extracted signal. Moreover, the segregation accuracy
between using the proposed model and using the other method, where it uses the omitted
constraints in the proposed model, were evaluated by computer simulations.

The results of simulations 1 and 2 showed that the proposed method could extract with
high precision the AM complex tone not only from a noise-added AM complex tone but
also from mixed AM complex tones, in which signal and noise existed in the same frequency
region. In particular, it was possible to reduce the SD by about 20 dB as noise reduction,
using the proposed method. Moreover, the results of simulation 3 showed that the proposed

method could also extract the speech signal from noisy speech.
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Comparing the proposed method with the three conditions, we found that using it with
constraints related to the four regularities is better than using the other method (under
three conditions). In particular, it could segregate the desired signal from the mixed signal,

with about 4 dB better precision and about 10 dB improvement in spectrum distortion.
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Appendix A: Proof of Lemma 1
Let Wi (t) = ¢r(t) — O1x(t). Rearranging Eq. (7), we obtain
Ak(t) = Sk(t) cos Wi (t) — Sk(t) cot Ox(t) sin U (t). (36)

Differentiating both terms in ¢ in the above equation, we obtain

, Q'(t)  Chr(t)

(37)

where y(t) = cot O(t), P(t) = Sk(t)sin Ui(t), and Q(t) = Sk(t) cos ¥y (). Since the above

equation is a linear differential equation, a general solution y(t) is determined by

y(t) — # (Q(t) ~ [ Cuntrydr + 0) , (39)

where C' is an undermined coefficient. Hence, from

Si(t) cos Wy (t) — [ Cyr(t)dt + C

cot O (t) = Sk (t) sin Wy (t) ,

(39)
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we obtain

B Sk(t) sin(or(t) — O1x(t))
Or(t) = arctan (Sk(t) cos(dn(t) — Ou(t) + Ck(t)> ’ (40)

where Cy(t) = — [ Cr r(t)dt + C. On the other hand, applying Eq. (36) into Eq. (40), we

obtain

Ap(t) = Sk(t) (cos W (t) — cos Wi(t) — C’k(t)>
= —Ci(t). (41)

Considering that C' = —C}, that is the same result as integrating Eq. (9).

Appendix B: Wavelet transform

First, we summarize the wavelet transform and the inverse wavelet transform [Chui, 1992
] for designing a constant Q filterbank.
The integral wavelet transform for f(t) is defined by

f(a,b) = \/,/OO <t — b)dt, (42)

where a is the “scale parameter,” b is the “shift parameter,” a,b € R with a # 0, and ¥

is the conjugate of ¥. The integral basis function is 1 (t) scale-transformed by parameter
a and shifted by parameter b. The selection of ¥ (t) allows much mathematical freedom;
however, in general, 1(t) is determined to be an integrable function that satisfies the

following “admissibility condition”:

Gy = /_o:o |Q/J(W)Pdw < 00, (43)

jwl

where 9 is the Fourier transform of v, It follows that v is a continuous function, so that the
finiteness of Gy, in Eq. (43) implies that ¥(0) = 0, or equivalently, 2o w(t)dt = 0. If the

above equation is satisfied, 1 is called a “basic wavelet,” and a unique inverse transform

()

Since the analyzing wavelet ¥ (t) in Eq. (20) approximately satisfies the admissibility

exists as follows:

condition because |1(0)| = 0, it can be considered that this analyzing wavelet is the basic

wavelet.
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Equations. (42)—(44) are a continuous wavelet transform. The discrete wavelet transform

corresponding to these equations is represented by

Upa(t) == a™/%y (t _QZ : b) : (45)
foa=Flan.0/80 = [ 103, (00t (46)

and
10) = =% Fratpal®) (47)

q

where p and ¢ are integer parameters.

Appendix C: Proof of Lemma 2

The wavelet transform in Eq. (21) is a complex representation of the output of the analyzing
filter in Eq. (2):

Xu(t) = Sk(t)ej(wkt+¢k(t))
= f(a,b), a:ak_%,b:t (48)

Taking the absolute value for both terms, we obtain
[Xe(®)] = Silt) = 7"~ 0)] (49)

Similarly, comparing phase terms between Eqs. (48) and (21), we obtain

wit + ¢x(t) = arg(f(a,b)). (50)
Since the phase spectrum arg( f (a, b)) is represented by
. Im{f(a,b
arg(f(a,b)) = arctan M, (51)
Re{f(a,b)}
it becomes a periodical ramp function within
7 <arg(f(a,h) < 7. (52)
Differentiating both terms in Eq. (50), we get
doi(t) 0 Foog-K
ot B0 g (ot 1), (53)
After clearing, we obtain
don(t) 9 Fr k=5
-2 5 ,1)) — wr. 4
) _ 0 g (0 50) - (54)

Hence, the instantaneous output phase ¢ (t) is represented by

ont) = [ <% arg (f(a*%.1)) - Wk) dt. (55)
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Appendix D: Kalman filtering

The system of considering the Kalman filtering problem is a linear stochastic state-observation

description as follows:

X1 = FoXpm + Gwy, (state)

Ym = HpX,, + V., (observation),

where x,, and y,, are random variables, and F,,, G,,,, and H,,, are state transition matrix,
observation matrix, and driving matrix, respectively.

In this system, mean and variance with xq, w,,, and v,, are known. And F,,, G,,, H,,,
and v, are known matrices. The Kalman filtering problem is to determine the minimum

variance requirement X, from the observed y,,, m =0,1,2,---, M as follows.

)A(m|m = E(Xm + Yo, -- 7ym) (56)

The Kalman filter is called an algorithm that obtains a solution to the above problem
[Brown and Hwang, 1992 |.
It is calculated by sequentially performing the following: [Brown and Hwang, 1992 |.

1. Filtering equation

2. Kalman gain
2m i H*T
K,, [m=122m (59)

N Hm2m|m—lH:g + Evm

3. Covariance equation for the estimated-error

2m|m - 2m|m—1 - KmHm2m|m—1 (60)
2A]m—i-1|m = Fm2m|mF;;F + szme:;f (61)
4. Initial state
Xo|-1 = Xo, 20‘_1 = X, (62)
We remark that symbols =~ and X are mean and variance of a random variable, respec-

tively.



DWT : Discrete Wavelet Transform
IDWT : Inverse Discrete Wavelet Transform

Figure 1: Auditory segregation model.
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Figure 11: Segregation accuracy for simulation 1: (top panel) precision for the Ag(t),

(bottom panel) spectrum distortion for the extracted signal fi(t).
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Figure 14: Segregation accuracy for simulation 2: (top panel) precision for the Ag(t),

(bottom panel) spectrum distortion for the extracted signal fi(t).
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(bottom panel) spectrum distortion for the extracted signal fi(t).
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Figure 19: Comparison of the amplitude spectrum of fl(t) with the amplitude spectrum

of fi(1).



Table 1: Definitions of symbols for the segregation problem.

Symbol Definition

Sk(t) instantaneous amplitude

ok (t) instantaneous output phase

Ai(t), Bi(t) instantaneous amplitude

015 (1), Oax.(t) instantaneous input phases

Or(t) input phase difference

Fy(t) Fundamental frequency

Cr.r(t), Dir(t), R-th-order polynomial
Eor(1) (differentiable, piecewise)

Cr(t) undetermined function
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Table 2: Constraints corresponding to Bregman’s regularities.

Heuristic regularity (Bregman, 1993)

Constraint

(i) Unrelated sounds seldom start or stop at exactly
the same time.

(ii) Gradualness of change.

(a) A single sound tends to change its properties
smoothly and slowly.

(b) A sequence of sounds from the same source
tends to change its properties slowly.

(iii) When a body vibrates with a repetitive period,
this vibrations give rise to an acoustic pattern
in which the frequency components are
multiples of a common fundamental.

(iv) Many changes that take place in an acoustic
event will affect all the components of the
resulting sound in the same way and at

the same time.

Synchronous of onset and offset

Gradualness of change

(piecewise—differentiable polynomial
approximation and smoothness)

(piecewise—differentiable polynomial
approximation and smoothness)

Harmonicity

Correlation between the

instantaneous amplitudes




Table 3: Specifications of the filterbank design

Symbol

Definition

S

sampling frequency 20 kHz

channel number
bandwidth

scale parameter
scale

index

dilation

index

128
60 Hz~6 kHz
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Table 4: Definitions of symbol for the Kalman filter.

Symbol Definition
observed signal Vi = Xi(tm)
state variable Xy = —Cro(tm)
observed noise Vi, = Xog(tm)
system noise W, = W,

state transition matrix F,, = ACk(t,,)
observation matrix H,, = elwktn

driving matrix G, =-1




