研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。2022年度エクセレントコア国際研究拠点セミナー 「あらせ (ERG) がとらえた宇宙のサイレントボイス」 Silent voice in Geospace detected by Arase(ERG)
セミナーを下記のとおり開催しますので、ご案内します。
オンライン(Webex)でもご参加いただけます。
開催日時 | 令和4年7月15日(金) 16:00~17:15 |
会 場 | 知識科学系講義棟中講義室及びオンライン(Webex) |
講演題目 | 「あらせ (ERG) がとらえた宇宙のサイレントボイス」 Silent voice in Geospace detected by Arase(ERG) |
講 師 | 金沢大学 学術メディア創成センター/先端宇宙理工学研究センター (兼)大学院自然科学研究科電子情報科学専攻 教授 笠原 禎也 氏 |
参加申込・ お問合せ |
学外の方は下記の事務担当へ前日までにお申し込みください。 (参加費無料) 北陸先端科学技術大学院大学 サイレントボイスセンシング国際研究拠点長 水田 博 (E-mail:mizuta@jaist.ac.jp) 事務担当:北陸先端科学技術大学院大学 研究施設支援係 (E-mail:sien@ml.jaist.ac.jp) |
ダイヤモンドのNV中心を用いた温度計測に成功 ~非線形光学による新しい量子センシングの可能性~

![]() ![]() |
国立大学法人筑波大学 国立大学法人北陸先端科学技術大学院大学 |
ダイヤモンドのNV中心を用いた温度計測に成功
~非線形光学による新しい量子センシングの可能性~
温度センサーは接触型と非接触型に大別されます。接触型の温度センサーには抵抗温度計、サーミスタや熱電対などが、非接触型の温度センサーには量子準位の変化で温度を読み取る量子センサーが主に用いられています。非接触型量子センサーの中でも、ダイヤモンドに導入した窒素―空孔(NV)中心と呼ばれる格子欠陥を用いたセンサーは、高空間分解能・高感度を必要とする細胞内計測やデバイス評価装置のセンサーへの応用が期待されています。 高純度のダイヤモンドは結晶学的に対称性が高く、対象点を中心に結晶を反転させると結晶構造が重なる空間反転対称性を持っています。結晶の対称性は、結晶の光学的性質を決定する上で重要な役割を担っており、空間反転対称性の有無は、非線形光学効果の発現を左右します。本研究チームは近年、ダイヤモンド結晶にNV中心を人工的に導入し、ダイヤモンド結晶の反転対称性を破ることで、2次の非線形光学効果である第二高調波発生(SHG)が発現することを報告しました。このSHGは、結晶にレーザー光を照射した際に、そのレーザー周波数の2倍の周波数の光が発生する現象です。 この成果を基に、本研究では、20℃から300℃の温度範囲において、SHG強度の変化を調べ、高温では屈折率変化による光の位相不整合によりSHG強度が大きく減少することを発見しました。 本研究成果は、ダイヤモンドベースの非線形光学による温度センシングの実現に向けた効率的かつ新しい方法を提示するものと言えます。 |
【研究代表者】
筑波大学 数理物質系
長谷 宗明教授
北陸先端科学技術大学院大学 応用物理学領域
安 東秀准教授
【研究の背景】
温度センサーは、エアコン、冷蔵庫、自動車エンジン、パソコンなどさまざまな電子機器に使用されており、温度管理や機器の性能維持に重要な役割を果たしています。温度センサーにはさまざまな種類がありますが、大きくは接触型と非接触型に分類されます。接触型の温度センサーには抵抗温度計、サーミスタ、熱電対などが用いられ、一方、非接触型の温度センサーには量子センサー注1)が主に使われています。
特に、ダイヤモンド中の窒素−空孔(NV)中心注2)を用いた非接触型量子センサーは、NV中心における量子準位間発光の共振マイクロ波周波数が温度によって変化することを原理とし、高空間分解能・高感度を必要とする細胞内計測や、デバイス評価装置のセンサーへの応用などが期待されています。ダイヤモンドのNV中心は、置換型窒素原子と炭素原子の隣の空孔からなる原子状欠陥(図1挿入図)です。
表面近傍(深さ数十ナノメートル)にNV中心を導入するには、一般に窒素イオン注入と高温アニールの組み合わせがよく用いられます。近年、ダイヤモンドのNV中心は、発光など豊かな光物性から、量子計算のためのフォトニックデバイス技術、単一光子源などへの応用が期待され、高い注目を集めています。さらに、ダイヤモンドのNV中心を用いた量子センシングが注目され、電場(電流)、磁場(スピン)の計測や、温度センサーに利用されています。一方、結晶の対称性、中でも空間反転対称性注3)の有無は、物質の光学的性質を決定する上で重要な役割を担っています。本研究チームは近年、ダイヤモンド結晶にNV中心を人工的に導入し、ダイヤモンド結晶の反転対称性を破ることで、2次の非線形光学効果である第二高調波発生(SHG)注4)を発現することを報告しましたa)。
今回、本研究チームは、NV含有ダイヤモンド結晶に赤外域の超短パルスレーザーを照射することで、第二高調波、および第三高調波の発光強度の温度依存性について研究し、非線形光学効果に基づいた温度センサーとしての可能性を探りました。
【研究内容と成果】
本研究チームは、フェムト秒(1000兆分の1秒)の時間だけ波長800nmで瞬く超短パルスレーザー注5)を波長1350nmの赤外パルス光に変換し、NV中心を導入した高純度ダイヤモンド単結晶に励起光として照射しました。これにより、ダイヤモンドの表面近傍から発生したカスケード型第三高調波(cTHG)と第二高調波の強度変化を、20℃~300℃の温度範囲で調べました。図2は、20℃(室温)から240℃までのさまざまな温度でNV含有ダイヤモンド結晶から得られた典型的な発光スペクトルを示します。室温の20℃においては、複屈折性を有するNV含有ダイヤモンド試料の角度を調整することにより、ほぼ完全な位相整合注6)が精巧に行われました。この時、SHGについては約4.7 × 10-5、cTHGについては約3.0 × 10-5の光変換効率が得られています。しかし、温度上昇に伴い、SHG および cTHG の強度は急激に減少することが分かります。
また、20℃から300℃までの非線形発光の温度同調曲線を、さらに光学調整を行わずに20℃の間隔で記録したところ、SHGとcTHGの積分強度は、低温領域(100℃以下)では、ほとんど温度変化しないことが分かりました。しかし、高温領域(150℃から300℃)では、SHG強度、cTHG強度ともに温度の上昇とともに急激に低下し、室温で得られる信号強度に比べてほぼ1桁低い信号強度が観測されました。一方、NV中心を導入する前の純粋なダイヤモンド結晶のTHG強度は、温度の上昇とともにゆっくり減少することが分かりました。ダイヤモンド結晶では、屈折率の温度変化による位相不整合により、格子温度の上昇に伴ってSHG強度が減少したと考えられます(図3)。このように、NV含有ダイヤモンドのSHGから得られる温度センサーとしての感度(dI/dT=0.81%/℃)は、高純度ダイヤモンドのTHGから得られる温度感度(dI/dT=0.25%/℃)よりも3倍以上大きく、非線形光学効果に基づいた温度センシング技術開発への大きな可能性を示すものでした。
【今後の展開】
本研究チームは、2次の非線形光学効果である第二高調波発生や電気−光学効果を用いた量子センシング技術を深化させ、最終的にダイヤモンドを用いたナノメートルかつ超高速時間領域(時空間極限領域)での量子センシングの研究を進めています。NV含有ダイヤモンドにおいては、NV中心の配向をそろえることでSHGの変換効率が高まると期待されます。また、NV含有ダイヤモンドは、チップ状に加工することで、走査型プローブ顕微鏡のプローブとしての役割も果たし、さまざまな先端材料に対して有効なナノメートル分解能をもつ温度センサーを実現できる可能性を秘めています。今後は、フェムト秒(1000兆分の1)パルスレーザー技術が持つ高い時間分解能と、走査型プローブ顕微鏡注7)が持つ高い空間分解能とを組み合わせ、ダイヤモンドのNV中心から引き出したSHGなどの2次の非線形光学効果が、電場や温度のセンシングに幅広く応用できることを示していきます。
【参考図】
図1.本研究に用いた実験装置の概略 挿入図は、ダイヤモンド結晶中の窒素―空孔(NV)中心の原子構造を示している。 |
図2.実験結果
第二高調波発生(SHG)とカスケード型第三高調波発生(cTHG)スペクトルの結晶温度依存性。五つの値:20℃(室温)、90℃、160℃、200℃、240℃に、黒、濃い赤、オレンジ、緑、紫の線が対応する。
図3.ダイヤモンド結晶における位相整合 NVダイヤモンド結晶における温度、屈折率(赤線)、およびSHG強度の関係を示す。 |
【用語解説】
注1)量子センサー
量子化した準位や量子もつれなどの量子効果を利用して、磁場、電場、温度などの物理量を超高感度で計測するセンサーのこと。
注2)窒素−空孔(NV)中心
ダイヤモンドは炭素原子から構成される結晶だが、結晶中に不純物として窒素(Nitrogen)が存在すると、そのすぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがある。この窒素と空孔が対になった「NV(Nitrogen-Vacancy)中心」は、ダイヤモンドの着色にも寄与する色中心(カラーセンター)と呼ばれる格子欠陥となる。NV中心には、周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性をセンサー機能として利用することができる。このため、NV中心を持つダイヤモンドは「量子センサー」と呼ばれ、次世代の超高感度センサーとして注目されている。
注3)空間反転対称性
三次元空間の直交座標系(x, y, z)において、結晶中の全ての原子を(x, y, z) → (-x, -y, -z)と反転操作しても元の結晶と完全に一致すること。
注4)第二高調波発生
同じ周波数(波長)を持つ二つの光子が非線形光学結晶に入射すると、入射した光子の2倍の周波数(半分の波長)の光が発生する現象のこと。2次の非線形光学効果(電場振幅の二乗に比例する効果)の一種である。同様に、第三高調波発生は三つの光子から入射した光子の3倍の周波数の光が発生する3次の非線形光学効果である。
注5)超短パルスレーザー
パルスレーザーの中でも、特にパルス幅(時間幅)がフェムト秒以下の極めて短いレーザーのことをいう。光電場の振幅が極めて大きいため、2次や3次の非線形光学効果を引き起こすことができる。
注6)位相整合
基本波レーザー光とそれから発生する第二高調波(或いは第三高調波)の位相速度が一致することである。位相整合を満たす方法として、複屈折性を有する結晶の角度を回転させることで二つの異なる波長に対する屈折率を位相整合条件に一致させることができる。位相不整合が起こると第二高調波の強度が減少することが知られている。
注7)走査型プローブ顕微鏡
小さいプローブ(探針)を試料表面に近接させ、探針を表面に沿って動かす(走査する)ことで、試料の原子レベルの表面構造のみならず、温度や磁性などの物理量も画像化できる顕微鏡である。
【研究資金】
本研究は、国立研究開発法人 科学技術振興機構 CREST「ダイヤモンドを用いた時空間極限量子センシング」(グラント番号:JPMJCR1875)(研究代表者:長谷 宗明)による支援を受けて実施されました。
【参考文献】
a) Aizitiaili Abulikemu, Yuta Kainuma, Toshu An, and Muneaki Hase, 2021, Second-harmonic generation in bulk diamond based on inversion symmetry breaking by color centers. ACS Photonics 8, 988-993 (doi:1021/acsphotonics.0c01806).
【掲載論文】
題 目 | Temperature-dependent second-harmonic generation from color centers in diamond. (ダイヤモンドの色中心からの温度依存的な第二高調波発生) |
著者名 | Aizitiaili Abulikemu, Yuta Kainuma, Toshu An, and Muneaki Hase |
掲載誌 | Optics Letters |
掲載日 | 2022年3月1日(著者版先行公開) |
DOI | 10.1364/OL.455437 |
令和4年3月9日
出典:JAIST プレスリリース https://txj.mg-nb.com/whatsnew/press/2022/03/09-1.html多機能ナノ粒子を用いて、無傷のリソソームを迅速かつ高純度に単離する手法を開発

![]() ![]() |
国立大学法人北陸先端科学技術大学院大学 国立大学法人東北大学 |
多機能ナノ粒子を用いて、無傷のリソソームを迅速かつ高純度に単離する手法を開発
ポイント
- 磁性―プラズモンハイブリッドナノ粒子を哺乳動物細胞のリソソーム内腔へエンドサイトーシス*1経路で高効率に送達することに成功
- ハイブリッドナノ粒子の細胞内輸送過程をプラズモンイメージング*2によって精確に追跡することで、高純度にリソソームを磁気分離するための最適培養時間を容易に決定可能
- リソソーム内腔にハイブリッドナノ粒子を送達後、細胞膜を温和に破砕し、4℃で30分以内にリソソームを磁気分離することで、細胞内の状態を維持したままリソソームの高純度単離に成功
北陸先端科学技術大学院大学(JAIST)(学長:寺野 稔、石川県能美市) 先端科学技術研究科 前之園 信也 教授、松村 和明 教授、平塚 祐一 准教授の研究チームは、東北大学(総長:大野 英男、宮城県仙台市)大学院生命科学研究科の田口 友彦教授と共同で、磁気分離能(超常磁性)とバイオイメージング能(プラズモン散乱*3特性)を兼ね備えた多機能ナノ粒子(磁性―プラズモンハイブリッドナノ粒子)を用いて、細胞内の状態を維持したままリソソームを迅速かつ高純度に単離する技術を世界で初めて開発しました。 |
【背景と経緯】
リソソームは60を超える加水分解酵素とさまざまな膜タンパク質を含む細胞小器官(オルガネラ)で、タンパク質、炭水化物、脂質、ヌクレオチドなどの高分子の分解と再利用に主要な役割を果たします。これらの機能に加えて、最近の発見では、リソソームがアミノ酸シグナル伝達にも関与していることがわかってきています。リソソーム機能障害に由来する疾患も数多く存在します。そのため、リソソームの機能をより深く理解することは基礎生物学においても医学においても重要な課題です。
リソソームの代謝物の探索は、近年急速に関心が高まっている研究分野です。たとえば、飢餓状態と栄養が豊富な状態でリソソームの代謝物を研究することにより、アミノ酸の流出がV-ATPaseおよびmTORに依存することが示されました(M. Abu-Remaileh et al., Science, 2017, 358, 807)。このように、外部刺激に応答したリソソームの動的な性質を調べるためには、リソソームを細胞内の状態を維持したまま迅速かつ高純度に分離する必要があります。
一般的に、リソソームの単離は密度勾配超遠心分離法*4によって行われていますが、密度勾配超遠心分離法には二つの大きな問題があります。まず一つ目の問題として、細胞破砕液にはほぼ同じ大きさと密度を持ったオルガネラが多種類あるため、得られた画分にはリソソーム以外の別のオルガネラが不純物として混ざっていることがよくあります。したがって、リソソーム画分のプロテオミクス解析を行っても、完全な状態のリソソームに関する情報を得ることができません。二つ目の問題として、分離プロセスに長い時間がかかるため、リソソームに存在する不安定なタンパク質は脱離、変性、または分解される可能性があります。この問題も、リソソームに関する情報を得ることを大きく妨げます。
これらの問題を克服するために、リソソームを迅速に単離するための他の技術が開発されました。たとえば、磁気ビーズを用いた免疫沈降法*5によってリソソームを迅速に分離できることが示されました(M. Abu-Remaileh et al., Science, 2017, 358, 807)。しかし、この手法では、ウイルスベクターのトランスフェクションなどによって抗体修飾磁気ビーズが結合できるリソソーム膜貫通タンパク質を発現させる必要があります。この方法は、密度勾配超遠心分離法よりも高純度のリソソーム画分が得られますが、リソソーム膜のタンパク質組成とその後のプロテオミクス解析に悪影響を与える可能性が指摘されています(J. Singh et al., J. Proteome Res., 2020, 19, 371-381.)。
【研究の内容】
本研究では、無傷のリソソームを迅速かつ効率的に分離する新たな単離法として、アミノデキストラン(aDxt)で表面修飾したAg/FeCo/Ag コア/シェル/シェル型磁性―プラズモンハイブリッドナノ粒子(MPNPs)をエンドサイトーシス経路を介してリソソームの内腔に集積した後、細胞膜を温和に破砕し、リソソームを磁気分離するという手法を開発しました(図1)。リソソームの高純度単離のためには、エンドサイトーシス経路におけるaDxt結合MPNPs(aDxt-MPNPs)の細胞内輸送を精確に追跡することが必要となります。そこで、aDxt-MPNPsとオルガネラの共局在の時間変化を、aDxt-MPNPsのプラズモンイメージングとオルガネラ(初期エンドソーム、後期エンドソームおよびリソソーム)の免疫染色によって追跡しました(図2)。初期エンドソームおよび後期エンドソームからのaDxt-MPNPsの脱離と、リソソーム内腔へのaDxt-MPNPsの十分な蓄積に必要な最適培養時間を決定し、その時間だけ培養後、リソソームを迅速かつマイルドに磁気分離しました。細胞破砕からリソソーム単離完了までの経過時間(tdelay)と温度(T)を変化させることにより、リソソームのタンパク質組成に対するtdelayとTの影響をアミノ酸分析によって調べました。その結果、リソソームの構造は細胞破砕後すぐに損なわれることがわかり、リソソームを可能な限り無傷で高純度で分離するには、tdelay ≤ 30分およびT = 4℃という条件で磁気分離する必要があることがわかりました(図3)。これらの条件を満たすことは密度勾配超遠心分離法では原理的に困難であり、エンドサイトーシスという細胞の営みを利用して人為的にリソソームを帯磁させて迅速かつ温和に単離する本手法の優位性が明らかとなりました。
本研究成果は、2022年1月3日(米国東部標準時間)に米国化学会の学術誌「ACS Nano」のオンライン版に掲載されました。
【今後の展開】
本手法はリソソーム以外のオルガネラの単離にも応用可能な汎用性のある技術であり、オルガネラの新たな高純度単離技術としての展開が期待されます。
図1 磁性―プラズモンハイブリッドナノ粒子を用いたリソソームの迅速・高純度単離法の概念図
図2 COS-1細胞におけるaDxt-MPNPsの細胞内輸送。 (A)aDxt-MPNPsの細胞内輸送の概略図(tは培養時間)。 (B)aDxt-MPNPsとリソソームマーカータンパク質(LAMP1)の共局在を示す共焦点レーザー走査顕微鏡像 (核:青、aDxt-MPNPs:緑、リソソーム:赤)。 aDxt-MPNPsはプラズモンイメージングによって可視化。 スケールバーは20 µm。 |
図3 単離されたリソソームのウエスタンブロッティングおよびアミノ酸組成分析の結果。 (A)ネガティブセレクション(NS)およびポジティブセレクション(PS)画分。 (B)PS画分の共焦点レーザー走査顕微鏡画像(緑:aDxt-MPNPs、赤:LAMP1)。 (C)NSおよびPS画分、および細胞破砕液のウエスタンブロット結果。 (D)異なる温度でtdelayを変化した際に得られたリソソーム画分のアミノ酸含有量の変化。 水色(4℃、tdelay = 30分)、青(4℃、tdelay = 120分)、ピンク(25℃、tdelay = 30分)、 および赤(25℃、tdelay = 120分)。 |
【論文情報】
掲載誌 | ACS Nano |
論文題目 | Quick and Mild Isolation of Intact Lysosomes Using Magnetic-Plasmonic Hybrid Nanoparticles (磁性―プラズモンハイブリッドナノ粒子を用いた完全な状態のリソソームの迅速かつ温和な単離) |
著者 | The Son Le, Mari Takahashi, Noriyoshi Isozumi, Akio Miyazato, Yuichi Hiratsuka, Kazuaki Matsumura, Tomohiko Taguchi, Shinya Maenosono* |
掲載日 | 2022年1月3日(米国東部標準時間)にオンライン版に掲載 |
DOI | 10.1021/acsnano.1c08474 |
【用語説明】
*1.エンドサイトーシス:
細胞が細胞外の物質を取り込む過程の一つ
*2.プラズモンイメージング:
プラズモン散乱を用いて、光の回折限界以下のサイズの金属ナノ粒子を光学顕微鏡(蛍光顕微鏡や共焦点顕微鏡など)で可視化すること
*3.プラズモン散乱:
金属ナノ粒子表面での自由電子の集合振動である局在表面プラズモンと可視光との相互作用により、可視光が強く散乱される現象
*4.密度勾配超遠心分離法:
密度勾配のある媒体中でサンプルに遠心力を与えることで、サンプル中の構成成分がその密度に応じて分離される方法
*5.免疫沈降法:
特定の抗原を認識する抗体を表面修飾したビーズ用い、標的抗原が発現したオルガネラを細胞破砕液中から選択的に分離する免疫化学的手法
令和4年1月5日
出典:JAIST プレスリリース https://txj.mg-nb.com/whatsnew/press/2022/01/05-2.htmlダイヤモンド量子イメージングプローブの新規作製法を開発 -ナノ量子イメージングに道-

ダイヤモンド量子イメージングプローブの新規作製法を開発
-ナノ量子イメージングに道-
ポイント
- レーザー加工と集束イオンビーム加工を用いた走査ダイヤモンド量子イメージングプローブの作製法の開発に成功
- 高性能化へ向けた加工自由度の高いナノ量子センシング・イメージングプローブ作製法として期待
北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)、先端科学技術研究科 応用物理学領域の貝沼 雄太大学院生(博士後期課程)、安 東秀准教授らは、京都大学、産業技術総合研究所と共同で、レーザー加工と集束イオンビーム加工注1)によりダイヤモンド中の窒素-空孔複合体中心(NV中心(図1[右]))注2)と呼ばれる極小な量子センサーをプローブ先端に含有するナノ量子イメージングプローブ(図1[左])の新規作製法の開発に成功しました。 |
【背景と経緯】
近年、新しいデバイスやセンサーの創出による環境・エネルギー問題の解決、安心安全な社会の実現、これらによる人類社会の持続的繁栄への貢献が求められています。この中で量子計測・センシング技術は、量子力学を原理とした従来とは異なる革新的な技術を提供する分野であり、将来の社会基盤を支えるしくみを一新すると期待されています(量子技術イノベーション)。その中でも、ダイヤモンド中の欠陥構造であるNV中心を用いた量子計測技術は、室温・大気中で動作可能なこと、センサーサイズがナノスケールであることより注目を集めており、特に、NV中心を走査プローブとして用いた際にはナノスケールの量子イメージングの実現が期待されています。
従来、走査NV中心プローブの作製にはフォトリソグラフィーと電子線リソグラフィーを用いたリソグラフィー法が用いられていましたが、この方法ではプロセスが複雑であること、再加工ができないという課題がありました。今回の研究では、レーザー加工と集束イオンビーム加工(FIB)による加工自由度の高い走査NV中心プローブの作製法を開発し、さらに磁気イメージングの動作を実証しました。
【研究の内容】
図2に示すように、まず、表面下約40ナノメートルにNV中心を有するダイヤモンド結晶の板を、レーザー加工によりロッド状の小片に加工した上で、水晶振動子型の原子間力顕微鏡の先端に取り付けました。続いて、FIB加工においてドーナツ型の加工形状を用いることで、当該小片の中心位置に存在するNV中心の加工ダメージを回避して走査ダイヤモンドNV中心プローブを作製しました。このNV中心プローブを走査しながら磁気テープ上に記録された磁気構造からの漏洩磁場を光学的磁気共鳴検出法(ODMR)注3)により計測し、磁気構造のイメージングに成功しました(図3)。
本研究成果は、2021年12月28日(米国東部標準時間)に米国物理学協会の学術誌「Journal of Applied Physics」のオンライン版に掲載されました。
【今後の展開】
本研究では、レーザー加工とFIB加工による加工自由度の高い走査NV中心プローブの作製法の開発に成功しました。今後、プローブの形状や表面状態を最適化することで、より高性能な走査ダイヤモンドNV中心プローブを作製し量子イメージング分野に貢献することが期待されます。
図1 ダイヤモンド中の窒素(N)-空孔(V)複合体中心(NV中心)[右]と、
走査ダイヤモンドNV中心プローブ[左]
図2 レーザー加工とFIB加工による走査ダイヤモンドNV中心プローブの作製
図3 走査ダイヤモンドNV中心プローブによる磁気テープの磁気構造イメージング
【論文情報】
掲載誌 | Journal of Applied Physics |
論文題目 | Scanning diamond NV center magnetometor probe fabricated by laser cutting and focused ion beam milling |
著者 | Yuta Kainuma, Kunitaka Hayashi, Chiyaka Tachioka, Mayumi Ito, Toshiharu Makino, Norikazu Mizuochi, and Toshu An |
掲載日 | 2021年12月28日(米国東部標準時間) |
DOI | 10.1063/5.0072973 |
【研究助成費】
本研究の一部は、次の事業の支援を受けて実施されました。
・科学技術振興機構(JST)戦略的創造研究推進事業CREST (JPMJCR1875)、
次世代研究者挑戦的研究プログラム(未来創造イノベーション研究者支援プログラム)(JPMJSP2102)
・澁谷学術文化スポーツ振興財団
・日本学術振興会(JSPS)科研費 基盤研究(C) (21K04878)
・文部科学省 光・量子飛躍フラッグシッププログラム(Q-LEAP, JPMXS0118067395)
【用語解説】
注1)集束イオンビーム加工(Focused Ion Beam, FIB)
イオンビームにより材料をナノスケールで加工する加工法。本研究では、ガリウム(Ga)イオンを用いてダイヤモンド片をプローブ形状に加工した。
注2)NV中心
ダイヤモンド中の窒素(N)不純物と空孔(V)が対になった構造(窒素-空孔複合体中心)であり、室温、大気中で安定的にスピン量子状態が存在する。
注3)光学的磁気共鳴検出法(Optically Detected Magnetic Resonance, ODMR)
磁気共鳴現象を光学的に検出する手法。本研究では532ナノメートルのレーザー光入射により励起・生成されたマイクロ波印加による蛍光強度の変化を計測しNV中心スピンの磁気共鳴を検出する。
令和4年1月5日
出典:JAIST プレスリリース https://txj.mg-nb.com/whatsnew/press/2022/01/05-1.html環境・エネルギー領域の高田助教の研究課題が松籟科学技術振興財団の研究助成に採択
公益財団法人 松籟科学技術振興財団の研究助成に環境・エネルギー領域の高田 健司助教の研究課題が採択されました。
松籟科学技術振興財団では、科学技術の振興に貢献するため、科学技術、特に天然物の有効利用、生理活性物質、有機新素材及び電子材料等、同財団の指定する課題分野にて優れた研究に携わる研究者への助成を行っています。
*詳しくは、松籟科学技術振興財団ホームページをご覧ください。
■研究者名
環境・エネルギー領域 高田 健司助教
■採択期間
令和4年4月~令和5年3月まで
■研究課題名
バイオマス由来ヒドロキシ酸を基盤としたフォトメカニカル材料の開発
■研究概要
フォトメカニカル材料は光によって材料の形状・形態を大きく変化させることが可能であり、古くからスマートマテリアルとしての利用が注目されていました。また、エネルギー効率の良い光を用いるという点からサスティナブルマテリアルとしても注目されており、その物性の精密制御や機能化法の確立が急務の課題となっています。本研究では、主鎖に桂皮酸を有するポリエステルの特徴的な構造に対して、リビング重合によるブロック/グラフトポリマー化による柔軟性の精密コントロールを達成し、多様な刺激応答性能を有するバイオベースプラスチックの提案を目的としています。
■採択にあたって一言
本研究課題を採択頂き大変嬉しく存じます。また、松籟科学技術振興財団、および本助成の選考委員会の皆様に深く感謝申し上げます。本研究が、地球の環境・エネルギー問題に資するものになるよう邁進してまいります。また、本研究に関して多大なアドバイスをいただいた金子達雄教授はじめ、様々な知見を頂いた研究室の皆様、および研究協力者の方々にこの場をお借りして厚く御礼申し上げます。
令和3年12月28日
出典:JAIST お知らせ https://txj.mg-nb.com/whatsnew/info/2021/12/28-1.html学生の八木さんが令和3年度応用物理学会北陸・信越支部学術講演会において発表奨励賞を受賞

学生の八木 稜平さん(博士前期課程2年、応用物理学領域、村田研究室)が令和3年度応用物理学会北陸・信越支部学術講演会において発表奨励賞を受賞しました。
令和3年度応用物理学会北陸・信越支部学術講演会は、12月4日に信州大学工学部及びオンラインにてハイブリッド開催され、一般54名・学生78名が参加しました。
この学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対して、その功績を称えることを目的として発表奨励賞が授与されます。
■受賞年月日
令和3年12月4日
■講演題目
「光導波路分光法を用いた有機発光ダイオードのオペランド吸収測定」
■研究者、著者
八木 稜平、江口 敬太郎、村田 英幸
■講演概要
有機発光ダイオード(OLED)は、陽極と陰極から有機層中に注入された正孔(ラジカルカチオン)と電子(ラジカルアニオン)が発光層で再結合し、一重項励起子と三重項励起子を1 : 3の割合で生成します。これらの励起子の失活過程によって、OLEDの発光効率と安定性は大きく影響されます。本研究では、光導波路分光法を動作中のOLEDの吸収スペクトル測定に応用することにより、素子内部で発生するラジカルカチオンをその場検出できる新しいオペランド吸収測定法を開発しました。そして、電荷注入によって生成したラジカルカチオンの吸収スペクトル測定に初めて成功しました。
■受賞にあたって一言
この度、令和3年度北陸・信越支部発表奨励賞をいただけたことを大変光栄に思います。ご指導いただきました村田英幸教授、江口敬太郎助教ならびに貴重なご意見を頂いた研究室のメンバーに深くお礼申し上げます。


令和3年12月14日
出典:JAIST 受賞https://txj.mg-nb.com/whatsnew/award/2021/12/14-1.html物質化学領域の木田助教の研究課題が澁谷学術文化スポーツ振興財団の研究助成に採択
公益財団法人 澁谷学術文化スポーツ振興財団の研究助成「大学の新技術、研究活動への奨励金」に物質化学領域の木田 拓充助教の研究課題が採択されました。
澁谷学術文化スポーツ振興財団では、大学における学術研究の充実を目的とした奨励金の給付事業を行っています。「大学の新技術、研究活動への奨励金」は、石川県内の大学において、機械・電子・電気・化学・情報処理・環境関係等の研究を行う教授・学生等のグループ又は個人を対象とし、成果が期待される新技術開発の研究に対して給付されます。
*詳しくは、澁谷学術文化スポーツ振興財団ホームページをご覧ください。
■研究者名
物質化学領域 木田 拓充助教
■採択期間
令和3年11月~令和4年10月
■研究課題名
振動分光法を用いた重水素化プローブ分子鎖の直接観察による高分子の変形メカニズムの解明
■研究概要
ポリエチレン(PE)をはじめとする結晶性高分子材料は、非常に優れた延伸性や柔軟性、加工性を示すことから、我々の日常生活で幅広く利用されています。結晶性高分子材料は内部に結晶と非晶が入り混じった複雑な構造を有しており、例えば結晶と結晶を繋ぐ分子や、非晶内に浮遊する分子鎖など、さまざまな構造状態の分子鎖が存在しています。材料の変形過程において、これらの分子鎖はそれぞれ異なる力学応答を示すため、各構造状態の分子鎖量の違いによって物性は大きく変化します。そのため、最近では各構造状態の分子鎖量を最適化することにより、従来の高分子材料に比べて飛躍的に優れた物性を有する高性能高分子を開発する試みが盛んに行われてきました。本研究では、我々が有する精密合成技術を駆使することで、特定の分子鎖のみを重水素化し、赤外分光法などの振動分光法で重水素化分子鎖の運動状態を直接観察することに挑戦します。各分子鎖の力学応答を正確に把握することができれば、材料設計者が希望する物性を達成するために必要な分子鎖構造を予測することが可能となり、高性能高分子開発のための重要な知見となることが期待されます。
令和3年11月24日
出典:JAIST お知らせ https://txj.mg-nb.com/whatsnew/info/2021/11/24-2.html学生の浅井さんが第70回高分子討論会において優秀ポスター賞を受賞

学生の浅井 優作さん(博士後期課程融合科学共同専攻1年、物質化学領域、松見研究室)が第70回高分子討論会において優秀ポスター賞を受賞しました。
高分子討論会は、高分子科学に携わる研究者・技術者が研究成果の発表を行い、発表内容に関し、参加者と充実した討論およびコミュニケーションができる場を提供することを開催の基本方針としています。
優秀ポスター賞は、高分子討論会において優れたポスター発表を行った発表者を表彰するため授与されるもので、もって発表を奨励し、高分子科学ならびに同会の発展に資することを目的としています。
第70回高分子討論会は、9月6日~8日にかけてオンラインで開催されました。
■受賞年月日
令和3年9月8日
■発表題目
共役系高分子によるIrO2の電子構造制御と酸素発生反応触媒性能への効果
■研究者、著者
〇浅井優作、Rajashekar Badam、松見紀佳
■受賞対象となった研究の内容
電気化学的水分解による水素製造法はシンプルで有望な方法である。しかし、アノードにおける酸素発生反応(OER)は電気化学的水分解の律速段階であり、効率的な触媒が求められる。本研究ではIrO2の電子構造をポリチオフェン系高分子によって制御することで、先行研究と比較して電流密度10 mAcm-2における過電圧を10~70 mV低下させるOER触媒を見出すに至った。
■受賞にあたって一言
この度は、2021年度第70回高分子討論会におきまして、このような賞をいただけたことを大変光栄に思います。本研究の遂行にあたり、厳格かつ熱心にご指導を頂きました松見紀佳教授、Rajashekar Badam講師にこの場をお借りして心より御礼を申し上げます。さらに、多くのご助言をいただきました研究室の皆様にこの場をお借りして心より御礼を申し上げます。


令和3年11月4日
出典:JAIST 受賞https://txj.mg-nb.com/whatsnew/award/2021/11/04-2.html応用物理学領域の村田研究室の論文がThe Journal of Physical Chemistry Letters誌の表紙に採択
応用物理学領域の江口 敬太郎助教、村田 英幸教授の論文が米国化学会(ACS)刊行のThe Journal of Physical Chemistry Letters誌の表紙(Front cover)に採択されました。
■掲載誌
J. Phys. Chem. Lett. 2021, 12, 38, 9407-9412
掲載日2021年9月23日
■著者
Keitaro Eguchi* and Hideyuki Murata*
■論文タイトル
Evolution of the Ionization Energy in Two- and Three-Dimensional Thin Films of Pentacene Grown on Silicon Oxide Surfaces
■論文概要
分子薄膜が2次元構造から3次元構造に成長するにつれて、分子薄膜のイオン化エネルギーが小さくなることが理論計算により予測されていますが、実験的には確認されていませんでした。本研究では、光電子収量分光法を用いて2次元と3次元構造におけるペンタセン薄膜のイオン化エネルギーを測定し、ペンタセンを20層積層した3次元のペンタセン薄膜では、2次元のペンタセン薄膜に比べて、イオン化エネルギーが約0.2 eV小さくなることを初めて実証しました。
論文詳細:https://pubs.acs.org/doi/10.1021/acs.jpclett.1c02723
表紙詳細:https://pubs.acs.org/toc/jpclcd/12/38
令和3年10月6日
出典:JAIST お知らせ https://txj.mg-nb.com/whatsnew/info/2021/10/6-1.htmlメムキャパシタと自律局所学習を用いるニューロモーフィックシステムを開発
![]() ![]() ![]() |
学校法人 龍谷大学 国立大学法人 奈良先端科学技術大学院大学 国立大学法人 北陸先端科学技術大学院大学 |
メムキャパシタと自律局所学習を用いるニューロモーフィックシステムを開発
超コンパクト・低電力消費の人工知能への応用を期待
ポイント
- メムキャパシタと自律局所学習を用いるニューロモーフィックシステムを開発した。従来の人工知能と比べると、劇的なコンパクト化・低電力消費が期待できる。
- メムキャパシタとして、強誘電体キャパシタを用いることで、構造を単純なものとし、薄膜の液相プロセスを用いることで、作製プロセスも単純なものとしており、将来の高集積化が容易となる。DC電流が無く、過渡電流も減り、電力消費が大幅に減る。
- 自律局所学習として、メムキャパシタのヒステリシス特性を上手く利用することにより、結合強度の制御回路など無しに、ニューロモーフィックシステムに学習させることができ、やはり将来の高集積化が容易となる。
- 研究の成果は、「IEEE Transactions on Neural Networks and Learning Systems」(Impact Factor=10.451)に掲載。
【概要】
龍谷大学 先端理工学部電子情報通信課程の木村睦研究室は、奈良先端科学技術大学院大学 先端科学技術研究科 中島 康彦教授、北陸先端科学技術大学院大学 先端科学技術研究科 徳光 永輔教授(応用物理学領域)らと共同で、メムキャパシタと自律局所学習を用いるニューロモーフィックシステムを開発しました。 メムキャパシタは、印加電圧の履歴によりキャパシタンスが変化する回路素子で、本研究では、強誘電体キャパシタを用いることで、構造を単純なものとし、Bi3.25La0.75Ti3O12 (BLT)の薄膜の液相プロセスを用いることで、作製プロセスも単純なものとしており、将来の高集積化が容易となります。従来の大規模な模倣回路やメモリスタ(可変抵抗素子)の代わりに、メムキャパシタ(可変容量素子)を用いるため、DC電流が無く、過渡電流も減り、電力消費が大幅に減ります。 また、自律局所学習は、単一素子が自分自身の駆動条件のみで特性を変化させる学習方式であり、やはり将来の高集積化が容易となります。従来のシナプス素子の結合強度の制御回路など無しに、メムキャパシタの電圧履歴のキャパシタンス特性を上手く利用することにより、メムキャパシタだけで、ニューロモーフィックシステムに学習させることができます。 従来の人工知能と比べると、劇的なコンパクト化・低電力消費が期待できます。 |
【研究の背景】
「人工知能」は、現在、さまざまな用途に用いられ、将来、SDGs・Society 5.0・IoTといった未来社会に不可欠な情報インフラです。人工知能のための代表的な技術が、生物の脳の機能を模倣することで、自己組織化・自己学習・並列分散処理・障害耐性などの特長をもつ「ニューラルネットワーク」です。しかしながら、従来のものは、ハイスペックなハードウェアで実行される複雑・長大なソフトウェアで、人工知能のために最適化されておらず、コンピュータのサイズは巨大で、電力消費は膨大であり、また、並列分散処理・障害耐性などの特長は限定的でした。ニューラルネットワークを基本的なハードウェアのレベルから生体の脳の構造で模倣し、ニューロン素子やシナプス素子を実装するのが、「ニューロモーフィックシステム」です。しかしながら、従来のものは、人工知能としての最適化が不十分で、上記の特長は完全には得られていませんでした。この原因は、(1) 大規模な模倣回路やメモリスタ(可変抵抗素子)を使うため、DC電流・過渡電流が大きく、電力消費が大きい (2) 大規模なシナプス素子の結合強度の制御回路を使うため、サイズが大きいということによります。
【研究の目的】
そこで、本研究では、ニューロモーフィックシステムにおいて、(1) 模倣回路やメモリスタ(可変抵抗素子)の代わりに、メムキャパシタ(可変容量素子)を用いるため、DC電流が無く、過渡電流も減り、電力消費が大幅に減る (2) シナプス素子の結合強度の制御回路の代わりに、自律局所学習を用いるため、サイズが小さいということを目的とします。
【メムキャパシタ】
メムキャパシタは、印加電圧の履歴によりキャパシタンスが変化する回路素子です。本研究では、強誘電体キャパシタを用いることで、構造を単純なものとし、Bi3.25La0.75Ti3O12(BLT)の薄膜の液相プロセスを用いることで、作製プロセスも単純なものとしており、将来の高集積化が容易となります。ここでは、クロスバー型でメムキャパシタを作製し、印加電圧の履歴により強誘電体キャパシタの自発分極が変化することで、キャパシタンスが変化する回路素子を実現しています。
メムキャパシタ
【自律局所学習】
自律局所学習は、単一素子が自分自身の駆動条件のみで特性を変化させる学習方式であり、やはり将来の高集積化が容易となります。メムキャパシタの電圧履歴のキャパシタンス特性を上手く利用することにより、シナプス素子の結合強度の制御回路など無しに、メムキャパシタだけで、ニューロモーフィックシステムに学習させることができます。学習フェーズでは、シンプルに、クロスバー型の横電極と縦電極に電圧を印加するだけで、必要なキャパシタンスの変化が誘起されます。推論フェーズでも、シンプルに、横電極に電圧印加し、縦電極の電圧を読み取るだけです。
自律局所学習
【ニューロモーフィックシステム】
メムキャパシタと自律局所学習を用いるニューロモーフィックシステムを、実際に組み立てました。アルファベットの「T」と「L」を記憶させ、わずかに異なるパターンを入力するとき、記憶した「T」または「L」のより近いほうが出力されることを確認しました。この動作は「連想記憶」というもので、文字認識や画像認識に直接に応用できるものであると同時に、問題設定により、さまざまな人工知能の取り扱う課題に応用できるものです。
ニューロモーフィックシステム
連想記憶の実験結果
【研究の意義と今後の展開】
従来の人工知能では、たとえば、いま最も有名なコグニティブシステムは、サイズは冷蔵庫10台ほど、電力消費は数百kWと言われています。本研究の基本的な成果をもとに、同様の機能のシステムを構築することを想定すると、サイズはLSI 1チップ、電力消費は20W程度と、劇的なコンパクト化・低電力消費が期待できます。SDGs・Society 5.0において、世界的なエネルギ危機を回避し、IoTにおいて、各々の機器へ搭載することが可能となります。なお、先行研究として、メモリスタと外部学習を用いるニューロモーフィックシステム(M. Prezioso, Nature, 521, 61, 2015)と比較すると、本研究で同様の機能が、低電力消費のメムキャパシタと、外部学習なしの局所自律学習で、実現できています。
【論文情報】
論文名 | Neuromorphic System using Memcapacitors and Autonomous Local Learning (メムキャパシタと自律局所学習を用いるニューロモーフィックシステム) |
掲載誌 | IEEE Transactions on Neural Networks and Learning Systems (TNNLS) |
著者 | 木村 睦(龍谷大学・奈良先端科学技術大学院大学)、石崎 勇真、宮部 雄太、吉田 誉、 小川 功人、横山 朋陽(龍谷大学)、羽賀 健一、徳光 永輔(北陸先端科学技術大学院大学)、 中島 康彦(奈良先端科学技術大学院大学) |
DOI | 10.1109/TNNLS.2021.3106566 |
掲載日 | 2021年9月1日にオンライン版に掲載 |
令和3年9月3日
出典:JAIST プレスリリース https://txj.mg-nb.com/whatsnew/press/2021/09/03-1.html物質化学領域のBADAM講師が田中貴金属記念財団 萌芽賞を受賞

物質化学領域のBADAM, Rajashekar講師(松見研究室)が一般財団法人田中貴金属記念財団 萌芽賞を受賞しました。
田中貴金属記念財団は、貴金属に関する研究への助成を行い、貴金属の新分野を開拓醸成し、学術、技術ならびに社会経済の発展に寄与することを目的としています。
本助成金制度は、「貴金属が拓く新しい世界」へのさまざまなチャレンジを支援するため、1999年度から毎年実施されています。第22回目となる今回は、貴金属が貢献できる新しい技術や研究・開発に対して、あらゆる分野から研究を募集し、その結果、合計171件の応募があり、この中から合計26件の研究に対し、総額1,610万円の研究助成金を授与しています。
■受賞年月日
令和3年3月31日
■研究題目
水分解に適した効率的酸素発生触媒活性を有する強い金属―基盤相互作用を伴うIrO2系有機・無機ハイブリッド触媒
■受賞対象となった研究の内容
Dr Rajashekar Badam, has been working on various energy materials especially electrocatalysts for oxygen redox reactions for fuel cell and electrolyser applications to name a few. His passion to mitigate environmental issues lead to the research in green hydrogen production using water electrolysis. Water electrolysis is one of the cleanest ways to produce hydrogen. Oxygen evolution reaction (OER) at anode being kinetically and thermodynamically more demanding, need an efficient catalyst. IrO2 is the best-known catalyst which is stable in acidic medium but with high overpotential (~330 mV). Changing the morphology and electronic structure of IrO2 by alloying with other metals was found to reduce the overpotential but poor stability due to agglomeration of nanoparticles and leaching of alloying metal are the key problems to be answered. In this regard, they are working on a novel strategy of anchoring IrO2 nanopartlcles to electrochemically stable conducting polymer with coordination sites. The strong metal substrate interaction between IrO2 nanoparticles and high heteroatom content in the polymer lead to high durability and reduced overpotential making water electrolyser a viable method for green hydrogen production.
ラージャシェーカル バダム博士は様々なエネルギー関連材料、とりわけ電気化学触媒(燃料電池用の酸素還元触媒や水分解反応触媒)に注力した研究を行っています。グリーンな水分解反応など、環境問題の解決を指向した研究を進めています。水分解反応は水素を得るための最もクリーンな反応であり、アノード電極側での酸素発生反応が速度論的にも熱力学的にも技術課題になっています。IrO2は酸性条件でも安定ですが、高い過電圧を有しています。IrO2を他の金属と組み合わせることでモルフォロジーや電子構造を改変でき、過電圧を低下させることができますが、同時にナノ粒子の凝集や、合金触媒からの脱離が問題となります。この点に関して、彼らはIrO2を電気化学的に安定な導電性高分子中の配位子に配位させることに取り組んでいます。強い金属―基板相互作用がIrO2と高ヘテロ元素濃度を有するポリマー間で起こることは高い触媒の安定性と過電圧の低下につながり、水分解反応をグリーンな水素製造法として実現可能なものにすることにつながると期待しています。
■受賞にあたって一言
I would like to thank Tanaka Kikinzoku Memorial Foundation and the selection committee for bestowing me with this prestigious award. I would like to thank Professor Matsumi for all the guidance, Matsumi lab members and my family for the support. I take this opportunity to dedicate this award to the almighty God.
令和3年5月25日
出典:JAIST 受賞https://txj.mg-nb.com/whatsnew/award/2021/05/25-1.html学生の中村さんが令和2年度応用物理学会 北陸・信越支部学術講演会において発表奨励賞を受賞

学生の中村 航大さん(博士前期課程1年、環境・エネルギー領域、大平研究室)が令和2年度応用物理学会 北陸・信越支部学術講演会において発表奨励賞を受賞しました。
応用物理学会は、半導体、光・量子エレクトロニクス、新素材など、工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を続けています。
北陸・信越支部発表奨励賞は、応用物理学会北陸・信越支部が開催する学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対し、その功績を称えることを目的として授与されるものです。
今回、令和2年度応用物理学会北陸・信越支部学術講演会は、11月28日にオンラインで開催されました。
■受賞年月日
令和2年11月28日
■発表題目
封止材無しn型フロントエミッタ型結晶Si太陽電池モジュールの電圧誘起劣化
■講演の概要
近年、太陽光発電システムの導入が急増しているが、そのほとんどは、モジュールに封止材を有している。封止材を有した結晶シリコン(c-Si)太陽電池モジュールは、いくつか問題点があり、その一つである電圧誘起劣化(PID)は、太陽電池モジュールのアルミフレームとセル間の電位差に起因して性能が低下する現象である。PIDは、Na+侵入や電荷蓄積が封止材を経由して起きるため、封止材を無くせばこの問題は解決できると考えられる。本研究では、今後の普及が期待される、n型c-Siを基板に用い、光入射側にp型エミッタ層があるn型フロントエミッタ型c-Si太陽電池モジュールを作製し、封止材の有無がPIDにおよぼす影響を調査した。封止材の無いモジュールでは、SiNx膜からの電子移動やNa+の侵入の経路が存在しないため、性能低下が抑制できた。また、わずかに電荷蓄積型のPIDが見られたのは、リーク電流の経路を介してSiNx膜から電子が流出することにより正電荷が蓄積し、表面再結合が増大したためと考えられる。
■受賞にあたって一言
この度、応用物理学会北陸・信越支部学術講演会におきまして、発表奨励賞を頂けたことを大変光栄に思います。ご指導いただいた、大平圭介教授、Huynh Thi Cam Tu特任助教ならびに研究室のメンバーには厚く御礼申し上げます。本受賞を励みに、今後もより一層精進して参りたいと思います。
令和2年12月7日
出典:JAIST 受賞https://txj.mg-nb.com/whatsnew/award/2020/12/7-2.html水田教授らが太陽誘電社とグラフェン超高感度においセンサの共同開発を発表

環境・エネルギー領域の水田 博教授らの研究グループは、 太陽誘電株式会社(本社:東京都、代表取締役社長:登坂正一、以下太陽誘電)と、グラフェンを用いた超高感度においセンサの共同開発を発表しました。
<発表の概要>
水田教授らの研究グループは、原子層材料グラフェンを用いた独自のNEMS(Nano-Electro-Mechanical Systems: ナノ電子機械システム)技術を用いて、グラフェン表面に物理吸着した単一CO2ガス分子によるグラフェンの微小な電気抵抗変化を、室温で検出時間<1分で高速検出する抵抗検出方式の単分子レベル気相センサの原理検証に成功しています。この抵抗検出方式グラフェンセンサはグラフェンとガス分子間の化学反応を用いておらず、吸着を加速する目的で印加している基板電界を切れば吸着分子は自然に脱離します。つまりセンサのリフレッシュ動作は必要なく、それゆえ素子のライフタイムを飛躍的に長くできます。最近では、この基盤技術を応用展開し、室温大気圧雰囲気下で濃度~500 pptの極薄アンモニアガスに対して、検出時間<10秒で高速検出することにも成功しています。また、グラフェンRF振動子を用いた質量検出方式グラフェンセンサの基盤技術も開発済みです。現在のQCM(Quartz Crystal Microbalance:水晶振動子マイクロバランス)センサの質量検出限界が数ピコグラム(10-12 g)レベルであるのに対して、本研究では、濃度~数ppbのH2/Arガス中で、グラフェン振動子表面に吸着した分子による質量の増加を、室温で100ゼプトグラム(1zg = 10-21 g)レベルで検出することに成功しています。これは、従来のQCMセンサと比較して約7桁の質量感度向上にあたります。
一方、太陽誘電は、これまでQCMを用いたにおいセンサの開発を行ってきました。開発中のセンサシステムは、①QCMセンサアレイモジュール、②センサコントロールユニット、③クラウド処理の3つの構成要素からなっており、①QCMセンサモジュールは、水晶振動子、水晶発振回路、周波数検出回路、流路、ポンプ、BLE(無線)等から構成されています。②センサコントロールユニットは、①QCMセンサモジュールと同時複数(最大32台)接続し、センサデータを取得するとともに、そのデータをクラウドへアップするゲートウェイ機能を有しています。③クラウド処理は、②センサコントロールユニットを介してアップされたセンサデータをニューラルネットワークの機械学習で処理し、においの種類や危険予知、故障予測など人にとって意味のある結果を出力します。しかし、①のQCMセンサの感度は人の嗅覚感度にも達しておらずppm程度の濃度が検出限界であることが課題となっています。
本共同開発においては、両グループの相補的な世界的卓越技術を融合させ(図1参照)、犬や線虫の嗅覚能力に迫るpptレベルの超高感度(図2参照)を可能とするマルチセンサアレイ方式パターン分析超低濃度・超微小量においセンシング技術を開発します。これは太陽誘電の高感度化ロードマップ(図3参照)において、最高感度フェーズの技術として位置づけられています。
図1 太陽誘電株式会社と水田教授グループの共同開発チーム概念図
図2 匂いセンサの応用分野と既存センサの性能および共同開発する超高感度グラフェンセンサのターゲット
図3 太陽誘電株式会社の高感度化ロードマップにおける本共同開発の位置付け
図4 共同開発チームの主メンバー:
左から水田博教授、太陽誘電株式会社開発研究所・機能デバイス開発部の服部将志課長、下舞賢一次長
<今後の展開>
生体・環境などのにおいをシングルppb~pptレベルで識別するグラフェンセンサアレイを室温・高速で動作させ、真のe-Nose技術の実現を目指します。また、これを、①皮膚ガス検知によって未病検出や精神的ストレスモニタを可能とする高機能ヘルスチェックシステムや、②シックハウス症候群の原因となっているVOC(揮発性有機化合物)など生活環境汚染モニタリングシステム開発に発展させ、新たな産業・市場開拓に挑んでまいります。
図5 超高感度グラフェンにおいセンサシステムによる応用展開例
本共同開発事業は、10月23日開催の、粉体粉末冶金協会2019年度秋季大会(第124回講演大会)講演特集『スマートソサイエティを支える高機能電子部品材料』において発表予定です。
*参考:粉体粉末冶金協会2019年度秋季大会(第124回講演大会)ホームページ
令和元年10月23日
出典:JAIST お知らせ https://txj.mg-nb.com/whatsnew/info/2019/10/23-2.html学生の米澤さんが笹川科学研究助成に採択
学生の米澤 隆宏さん(博士後期課程3年、応用物理学領域、高村研究室)が公益財団法人・日本科学協会笹川科学研究助成に採択されました。
笹川科学研究助成は、課題の設定が独創性・萌芽性をもつ研究、発想や着眼点が従来にない新規性をもつ若手の研究を支援しています。
■採択期間
2019年4月1日~2020年2月10日
■研究課題
界面状態の理解に基づく半導体/絶縁体基板上へのシリセン成長と物性・形成機構の解明
■研究概要
Siの二次元結晶である「シリセン」は理論的に新奇量子現象の発現やそれを利用した次世代電子デバイスへの応用が期待されていますが、合成報告されたシリセンの殆どが金属基板を用いているため、シリセン自体の物性の殆どが未解明のままとなっています。本研究では半導体/絶縁体基板上へのシリセン合成を試み、電子線/X線を用いた分析や原子分解能顕微鏡観察、計算による解析などの多角的な評価を通じて、シリセンの物性・形成機構の解明を目指します。
■採択にあたって一言
私のシリセンに関する研究が伝統のある笹川科学研究助成に採択されたことを大変嬉しく思います。シリセンの物性解明、実用化に向け、本助成を通し、その取り組みを一層と加速したく思います。本研究課題を採択して下さった公益財団法人日本科学協会に心より感謝申し上げます。また、本研究を進めるにあたり多くのご助言を頂きました主指導教員の高村由起子准教授、アントワーヌ・フロランス講師、研究室のメンバー及びスタッフの方々にも深く感謝致します。
令和元年5月10日
出典:JAIST お知らせ https://txj.mg-nb.com/whatsnew/info/2019/05/10-1.htmlモデル動物が群れをつくるメカニズムを解明
![]() |
![]() |
![]() |
モデル動物が群れをつくるメカニズムを解明
滋賀医科大学神経難病研究センターの杉 拓磨助教、西村 正樹教授、九州大学の伊藤 浩史准教授、北陸先端科学技術大学院大学先端科学技術研究科/生命機能工学領域の永井 健講師は、動物集団が群れをつくる際のメカニズムを解明しました。これにより将来的に渋滞時や災害時の群衆の効率的な流動制御や、ロボットの群知能制御などへつながることが期待されます。この研究成果は、平成31年2月18日に英国科学誌「Nature Communications(ネイチャー・コミュニケーションズ)」に掲載されました。
<ポイント>
- 生物学でよく使われる線虫という動物がたくさん集まるとネットワーク状に群れることを発見。
- 線虫の群れと、人、鳥、魚の群れは共通するメカニズムで形成されることを強く示唆。
<概要>
- 半世紀近く世界中で研究されているモデル動物の線虫C. エレガンスが、集団でネットワーク状の群れをつくることを発見。世界で初めてモデル動物の集団行動の実験システムを開発。
- 人、鳥、魚の群れ形成メカニズムの理論的研究で用いられてきた数理モデルをもとに数値シミュレーションを行った。
- その結果、①ぶつかった線虫が移動方向をそろえることと②線虫1個体が弧を描くように動くことが、線虫の不思議なネットワークをつくる鍵であることを明らかにした。
- 渋滞時や災害時の人の集団行動の解析やロボットの群知能の効率的制御につながることが期待できる。
<内容詳細>
【研究背景と経緯】
夕暮れどきに浮かぶ鳥の群れや水族館のイワシの群れなど、大量の動物による組織的な行動は多くの人を魅了します。また駅などの混雑時や渋滞時の人の群衆を効率的に流動させることは重要な問題です。これまで、群れ形成について理論研究が盛んに行われ、様々な群れに共通する形成メカニズムの存在が予言される一方、実験的な証明はほとんどありませんでした。これは、野外の鳥や魚の大規模な群れを実験室に再現することが不可能という、ある意味、当然の理由によるものでした。
土壌に生息する線虫C. エレガンス(図1a)は、モデル動物として半世紀近く研究され、細胞死機構の発見や緑色蛍光タンパク質の動物応用などで数々のノーベル賞の対象となりました。われわれは、線虫の体長はわずか1 mm弱であるため、仮に一度に大量飼育できれば、コンパクトな群れ形成の解析システムを作れるのではないかと考えました。さらにモデル動物としての利点である変異体を用いた解析ができることから、過去の理論的研究で提案されたメカニズムを実験的に検証できると考えました。
滋賀医科大学の杉 拓磨助教、西村 正樹教授、九州大学の伊藤 浩史准教授、北陸先端科学技術大学院大学の永井 健講師は、線虫C. エレガンスを大量飼育する方法を確立し、集団によりネットワーク状に群れをつくることを発見しました(図1)。実験と数理シミュレーションを組み合わせた解析の結果、①隣接する線虫同士が相互作用し移動方向をそろえることと②線虫1個体が弧を描くように動くことがこの群れの形成条件であることを明らかにしました(図2)。このメカニズムは人や鳥、魚の群れ形成の理論的研究から提唱されてきたものと類似していることから、本研究は、群れ形成の根底に共通のメカニズムがあることを実験で強く示唆した初めての例となります。
【研究内容】
線虫の飼育では通常、寒天培地上に塗布した大腸菌を餌として与えますが、この従来法では餌が枯渇すると線虫の増殖は止まってしまい、大量の線虫を得ることはできません。そこで本研究では、技術的ブレークスルーの1つとして、栄養に富む「ドッグフード」を線虫の餌として利用することにより、餌の枯渇なく、大量の線虫C. エレガンスを飼育することが可能になりました。そして驚くべきことに線虫集団はガラス表面(図1b)、プラスチック表面(図1c)、寒天培地表面(図1d)でネットワーク状に群れることを発見しました。この群れ形成の意味は、1個体では乾燥状態で干からびてしまう線虫が集団で群れることにより、表面張力により水を保持し、乾燥への耐性を獲得することにあると考えられます。
次に、1個体レベルと集団レベルの線虫の観察から、図2に記載の①と②が特徴的な線虫の運動であると示されました。この単純な物理的条件は過去の人や鳥、魚の群れの理論的研究から予想されたメカニズムと類似していることから、過去のこれらの研究をもとに数理モデルを作成しました。このモデルはシミュレーションにおいて線虫のネットワーク状の群れを再現しました。
つづいて、実験とシミュレーションで数理モデルのパラメータを変えた場合のそれぞれの結果の整合性を確認し、モデルの正確性を検証しました。まず上述①と②の条件(図2)に焦点をあて、線虫周囲の湿度を変えることにより相互作用の強さを変えることや(図3)、描く弧の大きさが小さい線虫変異体を用いた実験を行いました(図3)。その結果、数理モデルのシミュレーションと実験結果はよく一致しました。さらに神経科学分野の最先端テクノロジーであるオプトジェネティクス(p4参照)を用いた実験結果も再現されました。以上の実験とシミュレーションを用いた検証から、上述2条件(図2)が線虫集団による群れ形成の基本メカニズムであると結論づけました。
【今後の展開】
本研究は、人や鳥、魚などの動物集団の群れ形成に共通するメカニズムの存在を初めて実験的に示しました。今後、まずこの独自のモデル動物を用いた実験システムを用いて、さらに数理モデルの正確性を高める予定です。このようなモデルは、避難時や渋滞時の人の動きの解析につながります。実際、国内においても企業と大学が連携して、魚の群れが協調して行動する仕組みを自動運転技術に応用し、渋滞緩和に活かすための共同研究を実施しています。また、災害時や祭典での群衆の渋滞における圧死を避けるための緊急避難方法の解析は類似のモデルを用いて行われており、今後、本研究により数理モデルによる予測精度が向上すれば、効率的な避難方法の提案などにつながります。人間以外にも羊や魚の群れの効率的な制御を行うことにより、畜産や漁業などにも有用な知見を与えることも期待できます。
また、世界中で盛んなロボット開発では、ロボット単体では困難な作業を集団で行わせるため、群知能と呼ばれるアルゴリズムの開発が進められています。例えば、スイスの会社は超小型群ロボットKilobotを開発し、群制御を通して、がれき中の生存者探索や汚染物質除去などを実現しようとしています。本研究は、これらの研究分野とも密接に関連していくことが期待されます。
【参考図】
【論文情報】
論文名 | C. elegans collectively forms dynamical networks |
著者名 | Takuma Sugi*, Hiroshi Ito*, Masaki Nishimura, Ken H. Nagai* (*は責任著者) |
雑誌名,巻号,DOI | Nature Communications (2019年2月18日 (日本時間) 付 電子版), doi:10.1038/s41467-019-08537-y |
【研究資金情報】
- 科学研究費補助金 基盤研究(B)、若手研究(B)、新学術領域研究
- 科学技術振興機構 戦略的創造研究推進事業「さきがけ」
- 持田記念医学薬学振興財団
【用語説明】
- 線虫C. エレガンス
土壌に生息する非寄生性の線虫で、正式名称はセノハブダイディス・エレガンス。分子遺伝学的な解析の可能なモデル動物の1つ。半世紀近く前にシドニー・ブレナーにより利用され始め、細胞死の発見、RNA干渉の発見、緑色蛍光タンパク質の個体レベルでの応用により2002年と2006年のノーベル医学生理学賞、2008年のノーベル化学賞の対象となった。1998年には多細胞生物で初めて全ゲノム配列の解読が終了した。ヒトの遺伝子数と同程度の約2万個の遺伝子を持ち、それらの中にはヒトの遺伝子と類似したものが40%弱も含まれる。また体が透明なため、体外から体を傷つけずに蛍光観察できる。 - オプトジェネティクス
光遺伝学と呼ばれる、最先端のテクノロジー。光感受性のイオンチャネル分子を標的の神経細胞に発現させ、光刺激によりそのイオンチャネルを活性化させることで標的の神経細胞を活性化できる。線虫の場合、体が透明で光透過性が高いので、体を傷つけずに標的の神経細胞のみを活性化させることができる。本研究では、前進と後進を駆動する神経細胞にイオンチャネル分子を発現し、活性化した。
平成31年2月18日
出典:JAIST プレスリリース https://txj.mg-nb.com/whatsnew/press/2019/02/19-1.html世界最高水準の(有機系)Liイオン伝導体 ―有機系擬固体電解質の作製に成功―

世界最高水準の(有機系)Liイオン伝導体
―有機系擬固体電解質の作製に成功―
北陸先端科学技術大学院大学(学長・浅野 哲夫、石川県能美市)の先端科学技術研究科・環境エネルギー領域の金子 達雄教授と物質化学領域の松見 紀佳教授らは、バイオ分子から10-2 Scm-1弱のイオン伝導性を持つ擬固体電解質の作製に世界で初めて成功しました。
バイオ由来材料は植物などの生物に由来する再生可能な有機性資源(バイオマス)を原材料とする材料で、二酸化炭素(CO2)削減と廃棄物処理に有効であるとされていますが、未だ使い捨て分野で使用されているのが現状であり、用途は限られています。一方その高価格を想定した場合には、高付加価値を持つ用途への展開が想定されます。今回、東京大学でバイオ分子として数年前に見出された3-アミノー4-ヒドロキシ安息香酸を化学的にアレンジすることでポリベンズイミダゾールという超高耐熱高分子を合成し、その一部をホウ素系物質で化学修飾することでイオン化に成功しました。イオン化されたポリベンズイミダゾール(iPBI)とイオン液体をコンポジット化することでペースト状の固体電解質を得ました。その10%重量減少温度は340℃を超えるため高耐熱な擬固体電解質であり、かつイオン伝導性8.8x10-3Scm-1という有機系固体としては極めて高い値であることが分かりました。さらに、このイオン伝導のほとんどがLiイオン伝導の寄与によるものであることも分かりました。このメカニズムはiPBI鎖の持つ特別な電子状態によりLiイオンがあまり強く結合していないために印加電圧に敏感に応答するためと考えています。さらに、直線走査ボルタンメトリーにより4.5Vまでの電位窓を有することが分かりました。
さらに、この擬固体電解質の有用性を探るために、リチウムイオン二次電池セルを作製しその充放電特性を調べました。その結果、擬固体系ながらLi/電解質/Siセルにおいて0.1Cで約1300mAhg-1の放電容量を示しました。これにより未来指向型の次世代自動車に必須とされる高性能二次電池や、高電圧を必要とする他のエネルギーデバイスの要素技術として有効と考えられます。
本成果は、英国王立化学会誌Journal of Materials Chemistry A(インパクトファクター9.9)に1/28 午前10時(英国時間)オンライン公開されました。
平成31年1月29日
出典:JAIST プレスリリース https://txj.mg-nb.com/whatsnew/press/2019/01/29-1.html