研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。二次元格子をひねって重ねると一次元超格子が出現 ――二次元原子層物質が一次元物性研究の新しいプラットフォームに――

![]() ![]() ![]() ![]() |
東京大学 北陸先端科学技術大学院大学 大阪大学 科学技術振興機構(JST) |
二次元格子をひねって重ねると一次元超格子が出現
―― 二次元原子層物質が一次元物性研究の新しいプラットフォームに ――
【ポイント】
- シート状の原子層二枚を、特定の角度に向きをずらして重ねると、一方向に縞模様を持つ一次元モアレ超格子構造が形成できることを発見しました。
- 従来のモアレ超格子は原子層の構造と類似の二次元の周期性を持ちますが、本研究では、一次元の周期性しか持たない新しいコンセプトのモアレ超格子を提案・実証しました。
- モアレ超格子による原子層の性質の人工制御物性変調や、一次元性ならではの異方性の高い新奇物性研究の新しいプラットフォームになることが期待されます。また、素子応用に向けた研究の発展にも寄与することが期待されます。
二次元原子層WTe2のツイスト積層による一次元モアレ超格子の形成
東京大学 生産技術研究所の張 奕勁 助教と町田 友樹 教授らの研究グループは、北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域の大島 義文 教授および高村 由起子 教授の研究グループ、大阪大学大学院 理学研究科の越野 幹人 教授の研究グループと共同で、原子層物質(注1)の人工ツイスト二層構造(注2)において一次元の周期性を持つモアレ超格子(注3)が実現できることを明らかにしました。 本研究では、二テルル化タングステン(WTe2)の原子層二枚を使用し、それぞれの結晶方位に角度差(ツイスト角)を付けた状態で人工的に重ね合わせた構造(ツイスト二層構造)を作製し、透過型電子線顕微鏡(TEM)を用いて原子の配列パターンを直接観察しました。一般的にツイスト二層構造で出現するモアレ超格子内の原子配列パターンは二次元の周期性を持って変化しますが、本研究では特定のツイスト角において配列パターンの変化が一次元的になる、すなわち周期性が一方向のみになることを世界で初めて示しました(図1)。また、本モアレ超格子が従来のモアレ超格子とは異なる原理で形成されていることを理論的に突き止めました。一次元性による母物質の物性変調に伴う新奇物性探索の新しい舞台になることが期待されます。 |
図1:透過型電子線顕微鏡を用いたツイスト二層WTe2の原子像観察。
(a)WTe2原子層の模式図。a軸方向とb軸方向で周期性が異なる。(b,c)WTe2原子層二枚をツイスト角62度(b)および58度(c)でツイスト積層させた構造。単独の原子層が持つ周期性と異なる一次元的な周期性が出現する。(d) 試料構造および実験の模式図。h-BNは試料の保護層。(e,f)ツイスト角62度(e)および58度(f)で作成したツイスト二層WTe2試料の原子像。白いスケールバーは10 nm(ナノメートル)。(g,h)62度(g)および58度(f)ツイスト試料の電子回折像。緑と茶色の点がそれぞれの原子層の構造の周期性を示す回折スポット。赤枠(e)と青枠(f)で示された回折スポットのペアがモアレ超格子の周期性を表す。どちらの場合も回折スポットのペアが平行に並んでいることから、モアレ超格子が一方向のみに周期性を持っていることがわかる。青いスケールバーは2 nm-1(ナノメートルインバース)。 |
【発表者コメント:張 奕勁助教の「もしかする未来」】
本研究は偶然の発見から始まりました。パワーポイントの上で結晶構造を二つ重ね、片方をぐるぐる回転させていたところ一瞬縞模様が見えたのがきっかけです。モアレ超格子の原子配列を実際に観察し、また、理論的にその起源と一次元性を示すことができました。カーボンナノチューブなどの一次元物質は低次元特有の現象を示しますが、その特性を残したまま大面積化することは困難でした。今回、ナノチューブよりも面積の大きい原子層物質を用いて一次元構造が作製できたので、今後は一次元性を反映した物性の探索を進めていきたいと思います。
【発表内容】
原子層物質の人工ツイスト積層構造技術は、現在の原子層物質を用いた基礎物性研究の中心的な技術の一つです。異なる原子層物質を積層する場合だけでなく、同一の原子層物質を積層する場合であっても、それぞれの結晶方位をずらして積層(ツイスト積層)すると、元の物質の持つ周期性よりも大きな周期性を持つモアレ超格子が出現します。モアレ超格子が出現することで、元の原子層物質の物性を大きく変調し、新奇物性を誘起することが可能になります。例えば、単層グラフェンをツイスト角1.05度でツイスト積層すると、低温で超伝導転移を誘起できることが知られています。一般的に、モアレ超格子の大きさはツイスト角の増加とともに小さくなるため、これまでの研究は低ツイスト角領域(0度付近)を中心に行われてきました。
この度、本研究チームは、原子層物質二テルル化タングステン(WTe2)を用いた研究から、高ツイスト角でもモアレ超格子が出現し、さらに、特定の角度(62度と58度付近の二点)では一次元的なモアレ構造が出現することを発見しました。WTe2の特徴は、結晶構造が異方的、すなわち、結晶方位によって周期の大きさが異なることです(図1a)。代表的な原子層物質であるグラフェンや二セレン化タングステン(WSe2)は等方的(物理的な性質が方向によって異ならないこと)な結晶構造を持っており、高ツイスト角ではモアレ超格子は出現しません。本研究では、透過型電子顕微鏡(TEM)を用いてツイスト二層WTe2の原子配列パターンを直接観察することで高ツイスト角領域における一次元モアレ超格子を実験的に示しました(図1c,d)。また、構造の周期性を示す電子回折パターン(注4)において、モアレ超格子の周期を示す回折スポットのペアが全て平行になるという特徴を観測しました(図1e,f)。
モアレ超格子の周期性は元の原子層の持つ周期性から説明できますが、従来のモデルでは高ツイスト角領域におけるモアレ超格子を説明できません。本研究では従来のモデルを拡張することで、高ツイスト角領域においてモアレ超格子が出現し、さらに、62度と58度付近でモアレ超格子が一次元になる、すなわち、周期性が一方向のみになることを理論的に示すことに成功しました(図2)。加えて、電子回折パターンのシミュレーションから、実験的に観測された回折スポットペアの特徴(図1e,f参照)が一次元性を示す証拠になっていることを理論的に示すことにも成功しました(図3)。また、一次元モアレ超格子の出現はWTe2に特異な現象ではなく、異方的な結晶構造を持つすべての原子層物質で起こりうる普遍的な現象であることも明らかになりました。
一次元的なモアレ超格子を形成することで、従来の二次元的なモアレ超格子で誘起された物性変調とは異なる変調効果が期待されます。従来、カーボンナノチューブなど一次元物質の持つ物性の研究や素子応用には、無数のチューブを配向させた膜の形成という技術的な障壁がありましたが、人工ツイスト積層構造の一次元モアレ超格子ではマイクロメートルスケールで一次元構造が広がるため、基礎研究のみならず素子応用に向けた研究の発展にも寄与することが期待されます。
図2:近似三角格子モデルを用いた一次元モアレ超格子の再現。
(a)WTe2原子層の結晶構造。格子ベクトルa1、a2で囲われた長方形がユニットセル(周期一つ分の構造)。W原子とTe原子を区別せず原子位置に多少の動きを許容すると、格子ベクトルl1、l2で定義された三角格子(灰色点線)で近似できる。近似された格子は正三角形ではなく二等辺三角形になっている。(b)近似三角格子をツイスト積層した場合のモアレ超格子。一次元構造が再現されている。 |
図3:人工ツイスト二層WTe2の電子回折パターンのシミュレーション。
従来の低ツイスト角の場合と本研究における高ツイスト角の場合の比較。ベクトルb1、b2はそれぞれ格子ベクトルa1、a2(図2a参照)の周期を示す逆格子ベクトル。黒点と赤点がそれぞれの原子層に由来する原子回折スポット。黒矢印で示された解析スポットのペアがモアレ超格子の周期性(大きさおよび方向)を決定する。低ツイスト角の場合モアレ超格子の周期は様々な方向を向くため、二次元の超格子となる。一方62度と58度付近ではすべて平行になり一方向にしか周期性が存在しないため、一次元の超格子となる。 |
【発表者・研究者等情報】
張 奕勁 助教
町田 友樹 教授
大島 義文 教授
高村 由起子 教授
越野 幹人 教授
【論文情報】
雑誌名 | ACS Nano |
題名 | Intrinsic One-Dimensional Moiré Superlattice in Large-Angle Twisted Bilayer WTe2 |
著者名 | Xiaohan Yang, Yijin Zhang*, Limi Chen, Kohei Aso, Wataru Yamamori, Rai Moriya, Kenji Watanabe, Takashi Taniguchi, Takao Sasagawa, Naoto Nakatsuji, Mikito Koshino, Yukiko Yamada-Takamura, Yoshifumi Oshima & Tomoki Machida* |
DOI | 10.1021/acsnano.4c17317 |
URL | https://doi.org/10.1021/acsnano.4c17317 |
【研究助成】
本研究は、科学技術振興機構(JST) 戦略的創造研究推進事業 さきがけ「トポロジカル材料科学と革新的機能創出(研究総括:村上 修一)」研究領域における「極性二次元物質とそのヘテロ構造におけるバルク光起電力効果(JPMJPR20L5)」、さきがけ「新原理デバイス創成のためのナノマテリアル(研究総括:岩佐 義宏)」研究領域における「顕微分光による二次元物質デバイスの物性開拓(JPMJPR24H8)」、同 戦略的創造研究推進事業 CREST「原子・分子の自在配列・配向技術と分子システム機能(研究総括:君塚 信夫)」研究領域における「原子層のファンデルワールス自在配列とツイスト角度制御による物性の創発(JPMJCR20B4)」、日本学術振興会 科学研究費助成事業 学術変革領域(A)「2.5次元物質科学:社会変革に向けた物質科学のパラダイムシフト」(課題番号:JP21H05232, JP21H05233, JP21H05234, JP21H05235, JP21H05236)、および文部科学省 マテリアル先端リサーチインフラ事業(課題番号:JPMXP1223JI0033)の支援により実施されました。
【用語解説】
原子層物質とは、原子1個または数個分の厚みしかない層状の物質。原子間力で層間が弱く結合しており、二次元物質とも呼ばれる。層状構造を持つ単結晶から、スコッチテープなどの粘着性のテープを貼り付けて剥がすことで得られる(テープに付着している)、数ナノメートル以下まで薄くした二次元シート状の薄膜として作製する。代表例としてグラフェン、二硫化モリブデンなどが挙げられる。
原子層を二つ用意し、それぞれの結晶方位の間に相対的な角度差をつけて人工的に重ねた構造。
複数の原子層物質を重ねた際に出現する新たな周期構造。元の原子層物質の構造が持つ周期とは異なる周期性を持つ。
物質に電子線を照射した際に観察される干渉パターン。物質の構造の持つ対称性や周期性を反映したパターンが出現する。
令和7年3月28日
出典:JAIST プレスリリース https://txj.mg-nb.com/whatsnew/press/2025/03/28-1.html画像処理と電子顕微鏡を組み合わせて原子レベルでの物質の不思議を発見する


画像処理と電子顕微鏡を組み合わせて
原子レベルでの物質の不思議を発見する
ナノ物性顕微探索研究室
Laboratory on Microscopic Nano-Characterization
講師:麻生 浩平(ASO Kohei)
E-mail:
[研究分野]
原子スケール材料解析
[キーワード]
無機材料、固体物性、ナノ物質、ナノ計測、計測技術、画像処理、電子顕微鏡
研究を始めるのに必要な知識・能力
研究テーマと真剣に向き合う意思、周囲の声を聞き入れる素直さ、研究を進める日々を楽しむ気持ちが大切です。固体材料、電子顕微鏡、画像処理、確率統計のいずれかへの興味があると良いです。知識があればなお良いですが、必須ではありません。
この研究で身につく能力
一連の研究(材料の知識獲得、電子顕微鏡の操作技術、Pythonによる画像処理、結果の解釈、文章化、自研究室や他研究室とのディスカッション、成果としてのまとめ)を通じて、各項目の技術と知識、および研究をやり通す経験が身につきます。
一般的な技術としては、自分の考えを掘り下げて分かりやすく表現できるよう、文章力の向上に重点を置きます。進捗報告会など、日々の研究に関する交流を文章によって行います。将来的に、企業や大学において書類をまとめる際や、近年成長が目覚ましい生成AIを思い通りに動かすうえで、文章力は重要だと考えています。
【就職先企業・職種】 電気・材料メーカー、材料分析会社、大学の研究者や技術職員など
研究内容
原子レベルで起こる物質の不思議なふるまいを発見するために、画像処理と電子顕微鏡を駆使した手法開発を進めています。電子顕微鏡データは、そのままでは単なる数値の配列です。画像処理による解析を通して初めて、粒子サイズ、結晶構造、原子位置といった有益な情報が得られます1,2。また、最近では、動作中のデバイスの動画観察にも取り組んでいます3。時刻ごとの多数の画像で構成される動画を効率的に解析するうえでも、画像処理は欠かせません。
具体的な研究テーマとして、以下が挙げられます。
1. リチウムイオン電池材料の動作下ナノ解析
2. ナノ粒子を統計的・3次元的に解析する手法開発
3. 原子位置を精密解析する手法開発1−3
ここでは3に絞って紹介します。
原子位置を精密解析する手法開発
図1aは、棒状の金ナノ粒子の電子顕微鏡像です。像で明るく見える点は、奥行き方向にならぶ金原子の列です。一見すると、輝点は画像内で規則正しく並んでいるように見えますが、これが本当かを解析しました。
規則正しい周期位置からの原子のずれ、つまり原子変位を測定しました。従来の方法では、変位量が小刻みに変化して見えます (図1b)。これは原子変位の情報ではなく、解析の邪魔をする統計ノイズ成分です。
そこで、信号処理手法のひとつであるガウス過程回帰を用いることで、原子変位の情報を抽出することに成功しました(図1c)。測定可能な最小の原子変位は0.7 pm(ピコメートル、1兆分の1メートル)ときわめて小さく、材料のなかで生じる2.4 pmの原子変位を検出することに成功しました。
解析によって、粒子の先端部分に位置する原子列は、軸に沿って外側へと変位していることが発見されました。考察の結果、棒状粒子の先端と胴体で曲率が異なるため表面張力に差が生じ、局所的な変位が生じると示唆されました1。
図1 (a) 金ナノロッドの電子顕微鏡像。奥行き方向にならぶ金原子の列が明るい点として見えています。(b) 従来手法で測定した原子変位と (c) データ科学で処理した原子変位。原子が正常な位置から左にずれるほど暗い青色、右にずれるほど明るい黄色で示されます。
主な研究業績
- K. Aso, J. Maebe, XQ. Tran, T. Yamamoto, Y. Oshima, and S. Matsumura, “Subpercent Local Strains due to the Shapes of Gold Nanorods Revealed by Data-Driven Analysis”, ACS Nano 15 (2021) 12077
- K. Aso, H. Kobayashi, S. Yoshimaru, XQ. Tran, M. Yamauchi, S. Matsumura, and Y. Oshima, “Singular behaviour of atomic ordering in Pt–Co nanocubes starting from core–shell configurations”, Nanoscale 14 (2022) 9842
- J. Liu, J. Zhang, K. Aso, T. Arai, M. Tomitori, and Y. Oshima, “Estimation of local variation in Young’s modulus over a gold nanocontact using microscopic nanomechanical measurement methods”, Nanotechnology 36 (2025) 015703
使用装置
走査透過電子顕微鏡、解析用ワークステーションPC、集束イオンビームつき走査電子顕微鏡、電子顕微鏡用特殊ホルダー、電気化学測定装置、グローブボックス
研究室の指導方針
共同研究を活発に行っています。責任をもって自らの研究を進め、研究協力者も納得できる成果を挙げれば、自信につながります。加えて、自らの好みや賛否にとらわれず、多種多様な考えを受け止める幅広い視野が育まれます。個々の研究内容については、日常的に議論をおこない、必要があれば柔軟に軌道修正します。当初は想像しなかった面白いテーマが見つかるのも魅力です。学生の皆さんが大学院を終えるとき、研究を通して「ベストを尽くし、満足いく成果を挙げ、入学当初は想像もできない良い未来を迎えられた」と思えるよう、最大限サポートします。
[研究室HP] URL:https://www.jaist-oshima-labo.com/
電子顕微鏡とデータ科学の融合による新奇ナノ物性の探索


電子顕微鏡とデータ科学の融合による
新奇ナノ物性の探索
ナノ物性顕微探索研究室
Laboratory on Microscopic Nano-characterization
教授:大島 義文(OSHIMA Yoshifumi)
E-mail:
[研究分野]
電子顕微鏡、表面界面物性、ナノ物質
[キーワード]
オペランド観察、新計測技術、データ科学
研究を始めるのに必要な知識・能力
研究は、新しい何かを発見することです。そのなかでいちばん重要なのは「あきらめない」という強い気持ちです。能力としては、数学と物理の基礎知識を持っていることが望ましいです。
この研究で身につく能力
[基礎]:実験・学習・議論をとおして、固体物理学に対する深い理解が身につきます。
[技術]:電子顕微鏡、真空装置、3D-CADソフトの使い方を学びます。
また、Pythonプログラミングによるデータ解析を学びます。いずれも基礎から始めることができます。
[その他]:定期ミーティングでの発表をとおして、自分の研究を他者に分かりやすく伝えるスキルを学びます。
【就職先企業・職種】 電気・材料メーカー、材料分析会社、大学の技術職員など
研究内容

図1 (a) 実験の模式図。試料を保持するための装置 (試料ホルダー) は研究室で独自に開発しました。白金原子鎖の (b) コンダクタンス、(c) 剛性が測定できました。(d) 電子顕微鏡像。白金は暗く見えています。AとBにおいて、左右の白金を橋渡ししているのが単原子鎖です。

図2 (a) 金ナノロッドの電子顕微鏡像。奥行き方向にならぶ金原子の列が明るい点として見えています。(b) 従来手法で測定した原子変位と (c) データ科学で処理した原子変位。原子が正常な位置から左にずれるほど暗い青色、右にずれるほど明るい黄色で示されます。
本研究室では、ナノ材料がしめす新しい現象を探索しています。そのために、次のような研究に励んでいます。
☑ 電子顕微鏡によるナノ~原子スケールでの材料観察
☑ 材料の力や電気化学特性を測定できる新しい装置の開発
☑ データ科学の応用によって電子顕微鏡像から重要な情報を抽出
具体的な研究例を以下に示します。
よく伸びる白金原子の鎖状物質
電子顕微鏡のなかで材料を動かしながら、材料の電気伝導度、剛性、原子のならびを同時に測定できる特殊な試料ホルダーを自作しました1。このホルダーを用いて、幅が原子1個、長さが原子2~5個の白金鎖状物質の特性を調べました (図1)2。生活のなかで目にするふつうの白金は、原子が3次元的に結合しており、わずか数%しか伸びません。しかし、鎖状物質はもとの状態から+24%まで伸びました。1次元の単原子鎖にすることで、白金の結合特性が大きく変わることを発見しました。
データ科学による原子配列の解析
原子の正常な位置からのずれ(原子変位)を測定しました3。 従来の方法では、変位量が小刻みに変化して見えます (図2b)。これは原子変位の情報ではなく、解析のじゃまをするノイズ成分です。そこで、データ科学手法のガウス過程回帰を用いることで、原子変位の情報を抽出することに成功しました (図2c)。測定可能な最小の原子変位は0.7pm(ピコメートル、1兆分の1メートル)ときわめて小さく、材料のなかで生じる2.4pmの原子変位を検出することに成功しました。
主な研究業績
- J. Zhang, et al., Nanotechnology 31 (2020) 205706
- J. Zhang, et al., Nano letters 21 (2021) 3922
- K. Aso, et al., ACS Nano 15 (2021) 12077
使用装置
☑ 超高真空透過型電子顕微鏡
☑ 高度な物性測定をおこなうための電子顕微鏡ホルダー
☑ 3D-CADやデータ解析がおこなえるワークステーションPC
研究室の指導方針
研究室ミーティングを毎週おこなっています。担当の学生が、研究の進捗状況や、興味をもった論文について紹介し、みんなでディスカッションします。担当の頻度はおよそ3週間に1回です。固体物理を学ぶための読書会もあります。学生のあいだでの学びあい・教えあいや、ディスカッションを推奨しています。コミュニケーション能力を高めるために、国内外の学会で発表することも推奨しています。博士学生は、自らの研究に集中して科学雑誌に論文を投稿できるよう、最大限サポートします。
[研究室HP] URL:https://www.jaist-oshima-labo.com/
第1回ナノマテリアル・デバイス研究領域セミナー「電子顕微鏡による高空間分解能電子状態解析」
日 時 | 令和5年2月17日(金)13:30~15:00 |
場 所 | 知識科学系講義棟2階 中講義室 |
講演題目 | 電子顕微鏡による高空間分解能電子状態解析 |
講演者 | 京都大学 化学研究所 先端ビームナノ科学センター 准教授 治田 充貴 氏 |
言 語 | 日本語 |
お問合せ先 | 北陸先端科学技術大学院大学 共通事務管理課共通事務第三係 (E-mail:ms-secr@ml.jaist.ac.jp) |
● 参加申込・予約は不要です。直接会場にお越しください。
出典:JAIST イベント情報https://txj.mg-nb.com/whatsnew/event/2023/01/17-1.htmlナノ物質の強度を決める表面1層の柔らかさ ―電子顕微鏡観察下での金属ナノ接点のヤング率測定―

![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 国立大学法人 金沢大学 |
ナノ物質の強度を決める表面1層の柔らかさ
―電子顕微鏡観察下での金属ナノ接点のヤング率測定―
ポイント
- 金ナノ接点の物質強度(ヤング率)は接点が細くなると減少した。
- 独自開発の顕微メカニクス計測法でこの計測実験に成功。
- 最表面層のヤング率のみがバルク値の約1/4に減少。
- ナノ電気機械システム(NEMS)の開発に指針を与える成果である。
北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域の大島義文教授、富取正彦教授、張家奇研究員、及び金沢大学 理工研究域 数物科学系の新井豊子教授は、[111]方位を軸とした金ナノ接点を引っ張る過程を透過型電子顕微鏡で観察しながら、等価ばね定数と電気伝導の同時に測定する手法(顕微メカニクス計測法)によって、金ナノ接点のヤング率がサイズに依存することを明らかにした。 金[111]ナノ接点は砂時計のようなくびれ形状を持つ。そのくびれは、0.24nm引っ張るたびに、より小さな断面積をもつ(111)原子層1層が挿入されることで段階的に細くなっていく。この観察事実を基に、挿入前後の等価ばね定数値の差分から、挿入された(111)原子層の等価ばね定数を求め、さらにこの(111)原子層の形状とサイズを考慮してヤング率を算出した。サイズが2 nm以下になると、ヤング率は約80 GPaから30 GPaへと徐々に減少した。この結果から、最外層のヤング率が約22 GPaと、バルク値(90GPa)の約1/4であることを見出した。このような材料表面での機械的強度の差は、ナノ電気機械システム(NEMS)の材料設計において考慮すべき重要な特性である。 本研究成果は、2022年4月5日(米国東部標準時間)に科学雑誌「Physical Review Letters」誌のオンライン版で公開された。なお、本研究は、日本学術振興会(JSPS)科研費、18H01825、18H03879、笹川科学研究助成、丸文財団交流研究助成を受けて行われた。 |
金属配線のサイズが数nmから原子スケールレベル(金属ナノワイヤ)になると、量子効果や表面効果によって物性が変化することが知られている。金属ナノワイヤの電気伝導は、量子効果によって電子は特定の決められた状態しか取れなくなるためその状態数に応じた値になること、つまり、コンダクタンス量子数(2e2/h (=12.9 kΩ-1);e: 素電荷量、h: プランク定数)の整数倍になることが明らかになっている。近年、センサーへの応用が期待されナノ機械電気システムの開発が進められており、金属ナノワイヤを含むナノ材料のヤング率などといった機械的性質の理解が課題となっている。この解決に、例えば、透過型電子顕微鏡(TEM)にシリコン製カンチレバーを組み込んだ装置を用いて、カンチレバーの曲がりから金属ナノワイヤに加えた力を求め、それによって生じた変位をTEM像で得ることで、ヤング率が推量されている。しかし、この測定法は、個体差があるカンチレバーのばね定数を正確に知る必要があり、かつ、サブオングストロームの精度で変位を求める必要があるため、定量性が十分でないと指摘されている。
本研究チームは、原子配列を直接観察できる透過型電子顕微鏡(TEM)のホルダーに細長い水晶振動子(長辺振動水晶振動子(LER)[*1])を組み込んで、原子スケール物質の原子配列とその機械的強度の関係を明らかにする顕微メカニクス計測法を世界で初めて開発した(図1上段)。この手法では、水晶振動子の共振周波数が、物質との接触で相互作用を感じることによって変化することを利用する。共振周波数の変化量は物質の等価バネ定数に対応するので、その変化量を精密計測すればナノスケール/原子スケールの物質の力学特性を精緻に解析できる。水晶振動子の振動振幅は27 pm(水素原子半径の約半分)で、TEMによる原子像がぼやけることはない。この手法は、上述した従来の手法の問題点を克服しており、高精度測定を実現している。
本研究では、[111]方位を軸とした金ナノ接点(金[111]ナノ接点)をLER先端と固定電極間に作製し(図1上段参照)、この金[111]ナノ接点を一定速度で引っ張りながら構造を観察し、同時に、その電気伝導、および、ばね定数を測定した(図1下段)。金[111]ナノ接点は砂時計のようなくびれをもつ形状であり、0.24nm引っ張る度により狭い断面をもつ(111)原子層1層がくびれに挿入されることで段階的に細くなることを観察した。これは、図1下段のグラフで電気伝導がほぼ0.24nm周期で階段状に変化することに対応していた。この事実から、挿入された(111)原子層の等価ばね定数を挿入前後の等価ばね定数の差分から算出することができ、さらに、この(111)原子層の形状やサイズを考慮することでヤング率を見積もった。なお、28回の引っ張り過程を測定して可能な限り多数のヤング率を見積もることで統計的にサイズ依存性を求めた(図2)。その結果、ヤング率は、サイズが2 nm以下になると、サイズが小さくなるとともに約80 GPaから30 GPaへと徐々に減少した。この結果から、最外層のヤング率が約22 GPaと、バルク値(90GPa)の約1/4であることを見出した。このような材料表面の強度は、ナノ電気機械システム(NEMS)の材料設計でも考慮すべき重要な特性である点で大きな成果である。
図1
(上段)金ナノコンタクトの等価ばね定数を計測する顕微メカニクス計測法。透過型電子顕微鏡(TEM)を用いて金ナノ接点の構造観察をしながら、長辺振動水晶振動子(LER)を用いて等価ばね定数を計測できる。
(下段)(左)金ナノ接点の引っ張り過程における変位に対する電気伝導及び等価ばね定数の変化を示すグラフ。(右)変位Aと変位Bで得た金ナノ接点のTEM像と最もくびれた断面の構造モデルを示す。黄色が内部にある原子、青が最表面原子である。
図2
金[111]ナノ接点の引っ張り過程を28回測定して、統計的に求めた金[111]ナノ接点ヤング率のサイズ依存性である。横軸は、断面積である。赤丸が実験値であり、誤差は、同じ断面の金(111)原子層に対して得られたヤング率のばらつきを示す。青丸は、第一原理計算によって得た結果である。
【論文情報】
掲載誌 | Physical Review Letters |
論文題目 | Surface Effect on Young's Modulus of Sub-Two-Nanometer Gold [111] Nanocontacts |
著者 | Jiaqi Zhang, Masahiko Tomitori, Toyoko Arai, and Yoshifumi Oshima |
掲載日 | 2022年4月5日(米国東部標準時間) |
DOI | 10.1103/PhysRevLett.128.146101 |
【用語説明】
[*1] 長辺振動水晶振動子(LER)
長辺振動水晶振動子(LER、図1参照)は、細長い振動子(長さ約3 mm、幅約0.1 mm)を長辺方向に伸縮振動させることで、周波数変調法の原理で金属ナノ接点などの等価バネ定数(変位に対する力の傾き)を検出できる。特徴は、高い剛性(1×105 N/m)と高い共振周波数(1×106 Hz)である。特に、前者は、化学結合の剛性(等価バネ定数)測定に適しているだけでなく、小さい振幅による検出を可能とすることから、金属ナノ接点を壊すことなく弾性的な性質を得ることができ、さらには、原子分解能TEM像も同時に得られる点で大きな利点をもつ。
令和4年4月11日
出典:JAIST プレスリリース https://txj.mg-nb.com/whatsnew/press/2022/04/11-1.htmlナノ粒子中のサブパーセントの局所ひずみを捉える解析手法を開発 ―電子顕微鏡とデータ科学による究極の精密測定―

![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 国立大学法人 九州大学 |
ナノ粒子中のサブパーセントの局所ひずみを捉える解析手法を開発
―電子顕微鏡とデータ科学による究極の精密測定―
ポイント
- 電子顕微鏡とデータ科学を組み合わせることで、局所ひずみを高精度に測定
- 0.2%というわずかな局所ひずみをも検出できる精密さを達成
- 棒状ナノ粒子には表面形状の曲率変化に起因する約0.5%の局所膨張ひずみが生じることを発見
北陸先端科学技術大学院大学・先端科学技術研究科 応用物理学領域の麻生 浩平助教、大島 義文教授と、九州大学・大学院工学研究院のJens Maebe大学院生 (修士課程、当時)、Xuan Quy Tran研究員、山本 知一助教、松村 晶教授は、原子分解能電子顕微鏡法とデータ科学的手法であるガウス過程回帰を組み合わせることによって、ナノメートルサイズの粒子の中のわずか0.2%という局所ひずみを測定できる解析手法の開発に成功しました。開発した手法によって金のナノ粒子を解析したところ、棒状の粒子の内部では、先端付近で長さ方向に0.5%膨張したひずみを見出しました。この膨張ひずみは、粒子の先端部分で表面の形状(曲率)が変化しているために生じたこともわかりました。ナノ粒子の形状に由来して内部に局所ひずみが生じるという新たな発見と、ひずみを精密に捉える新規な手法は、ナノ物質内での原子配列と機能の理解に役立つと期待されます。 本研究成果は、2021年7月7日(米国東部標準時間)に科学雑誌「ACS Nano」誌のオンライン版で公開されました。 本研究は、日本学術振興会(JSPS)科研費基盤研究(B) (25289221、18H01830)と科学技術振興機構(JST)戦略的創造研究推進事業 ACCEL「元素間融合を基軸とする物質開発と応用展開」(研究代表者:北川 宏、研究分担者:松村 晶、プログラムマネージャー:岡部 晃博、研究開発期間:2015年8月~2021年3月、(JPMJAC1501))の支援を受けて行われました。 |
【研究背景と内容】
わずかな原子間距離の局所変化 (局所ひずみ) によって、磁性や触媒特性などといった様々な材料物性が左右されます。そのため、材料の局所ひずみを精密に測定する手法が求められてきました。ここ20年間で走査透過電子顕微鏡(STEM)の空間分解能が大きく向上して、原子状態の観察と解析が可能になりました。ナノメートルサイズの金の粒子をSTEMで観察したのが図1aです。ナノ粒子の内部に原子位置に対応した明るい点が整列して現れて見えます。原子は一見すると結晶構造を作って規則正しく周期的に配列しています。
しかし、図1aのSTEM像から原子の位置を特定して詳しく解析すると、場所によって原子は周期配列からわずかにずれて変位していることがわかりました。それをマップにしたのが図1bです。紙面左方向に大きく変位する原子が暗い青、紙面右方向に大きく変位する原子が明るい黄色でそれぞれ表されています。マップを遠目から見てみると、左から右手に向かって滑らかに、青色から黄色へと変化しているように見えます。しかし局所的には波のような細かい変化が全体を覆っています。この細かな変化は、像から原子位置を正しく特定できなかったために含まれる揺らぎノイズで、変位の変化率に相当するひずみを求めるうえで大きな障害になります。このノイズ成分を低減するには、長い時間 (カメラの露光時間に相当) をかけて計測して像質を改善するのがこれまでの一般的方法でしたが、計測時間が長くなるとその間の装置の機械的・電気的な状態のわずかな乱れの影響で像がゆがんでしまうという問題がありました。
そこで研究グループは、様々な分野で活用されているデータ科学手法のガウス過程回帰に着目しました。ガウス過程回帰では、データの真の姿は滑らかに変化すると仮定して、観測データにはこの真の姿に細かな揺らぎノイズが付加されていると考え、この順序をさかのぼることでデータの真の姿を予測します。ガウス過程回帰を図1bのマップに適用したところ、滑らかに変化する主要な成分だけを取り出すことに成功しました (図1c)。得られた変位の棒の長さ方向の変化率を求めて、局所的なひずみの分布をマップしたのが図1dです。開発した手法の精度を確かめるために、元データから直に、およびガウス過程回帰を適用して求めた場合のひずみ値の分布を比較したのが図1eです。元データでは標準偏差で1.1%の広がりがあるのに対して、ガウス過程回帰を用いることでその広がりが0.2 %に狭くなっており、ノイズ成分の除去によって有意に観測されるひずみ量の下限が大きく改善しました。
図1dに戻って見ると、棒の胴体部分と先端の半球部分の境目付近が明るい黄色になっており、この部分では棒の長さ方向に約0.5%膨張した局所ひずみが生じています。ナノ粒子では、表面積を小さくしようとして表面から内部に向かって力が作用するために、収縮ひずみが生じていると考えられていました。しかし、円筒状の胴体部と半球状の先端部からなる棒状の粒子では、2つの部分の表面曲率が異なることから内部にかかる力の向きと大きさに違いが生まれて、局所的に膨張するひずみ場が生ずることがわかりました。このように、原子位置の精密な解析が可能になって、ナノ粒子の局所形状によって内部のひずみの状態が変化することが発見できました。この新たな発見と、本成果で生み出された精密な解析手法は、ナノ構造材料の原子配置とそれによって引き起こされる機能に関する理解を深めることにつながると期待されます。
(b) 元データから得た原子変位マップ。紙面左方向への大きい変位が暗い青、紙面右方向への大きい変位が明るい黄色で表示される。細かく変化するノイズ成分が目立っている。
(c) ガウス過程回帰によって予測された真の変位。ノイズ成分の除去に成功している。
(d) 紙面横方向の変位の変化率(局所ひずみ)マップ。明るい黄色になっている両端部分では膨張ひずみが生じている。
(e) 元データとガウス過程回帰後のひずみ分布。ガウス過程回帰を用いることで、分布の広がりが1.1%から0.2%にまで狭まっており、微小な局所ひずみの検出が可能になった。
【研究資金】
・日本学術振興会(JSPS)科研費 基盤研究(B)(25289221、18H01830)
・科学技術振興機構(JST)戦略的創造研究推進事業ACCEL (JPMJAC1501)
【論文情報】
雑誌名 | ACS Nano |
題名 | Subpercent Local Strains Due to the Shapes of Gold Nanorods Revealed by Data-Driven Analysis |
著者名 | Kohei Aso*, Jens Maebe, Xuan Quy Tran, Tomokazu Yamamoto, Yoshifumi Oshima,Syo Matsumura |
掲載日 | 2021年7月7日(米国東部標準時間)にオンラインで掲載 |
DOI | 10.1021/acsnano.1c03413 |
令和3年7月13日
出典:JAIST プレスリリース https://txj.mg-nb.com/whatsnew/press/2021/07/13-1.html【募集終了】平成30年度 ナノテクノロジープラットフォーム公開講座「材料の構造解析のための透過型電子顕微鏡(TEM)の基礎と実習」

本学ナノマテリアルテクノロジーセンター主催で透過型電子顕微鏡(TEM)の技術の基礎を学び、実習を行うことのできる公開講座を開催いたします。
ただいま受講者を募集しております。皆様のご参加をお待ちしております。
日 時 | 平成31年3月8日(金)10:00~17:00 |
場 所 | 北陸先端科学技術大学院大学 ナノマテリアルテクノロジーセンター 2F会議室(石川県能美市旭台1-1) URL:https://txj.mg-nb.com/top/campusmap/ |
テーマ | 材料の構造解析のための透過型電子顕微鏡(TEM)の基礎と実習 |
講 師 | マテリアルサイエンス系 応用物理学領域 教授 大島 義文 ナノマテリアルテクノロジーセンター 技術専門員 東嶺 孝一 |
内 容 | 透過型電子顕微鏡は、金属材料、半導体デバイス、セラミックなどの欠陥や界面といった局所的な構造や組成を知るうえで欠かせない装置です。金属材料、半導体デバイス、セラミックの特性が欠陥や界面で決まることが多いことを考えると、この装置をよく知っておく必要があります。 本講座では、透過型電子顕微鏡の原理、正しい観察手法や正しいデータ解析方法などをわかりやすく解説します。デバイスや材料の研究開発に従事している多くの方に特にお勧めできる講座です。 |
定 員 | 5名(先着順) |
参加対象者 | 企業・他大学・高専等の研究者・技術者 |
受講料 | 6,200 円(税込) |
申込方法 | 受講希望の方は、 ①氏名(ふりがな) ②勤務先等・職名 ③受講の目的 ④本講座に期待すること ⑤書類送付先 ⑥電話番号 ⑦メールアドレス を明記の上、E-mail (宛先 nano-net@jaist.ac.jp)またはFAX(ポスター2ページ目参照)でお申し込みください。 |
申込締切 | 平成31年2月18日(月)まで【定員に達しましたので募集を締め切りました】 |
問合わせ先 ・申込み先 |
北陸先端科学技術大学院大学 ナノマテリアルテクノロジーセンター事務局 〒923-1292 石川県能美市旭台1-1 TEL:0761-51-1449 FAX:0761-51-1455 E-mail:nano-net@jaist.ac.jp |
ナノ粒子工学:機能材料の創製から応用まで


ナノ粒子工学:機能材料の創製から応用まで
ナノ粒子工学研究室 Laboratory on Nanoparticle Engineering
教授:前之園 信也(MAENOSONO Shinya)
E-mail:
[研究分野]
ナノ材料化学、ナノ材料物性、コロイド化学
[キーワード]
半導体ナノ粒子、磁性体ナノ粒子、金属ナノ粒子、バイオ医療、エネルギー変換、センシング
研究を始めるのに必要な知識・能力
基礎学力、コミュニケーション能力、知的好奇心、柔軟な思考
この研究で身につく能力
修士課程では、(1) ナノ材料の化学合成技術、(2) 各種分析機器(透過型電子顕微鏡、X 線回折装置、X 線光電子分光、組成分析装置など)の操作スキル、(3) 基礎学問の知識(無機材料化学、結晶学、コロイド化学、固体物性など)、(4) ナノ材料に関する先端専門知識を身につけて頂きます。博士課程では、1-4に加え、英語によるプレゼンテーション能力、英語論文執筆能力、研究課題設定能力、共同研究遂行能力など、研究者に必要なあらゆる能力を身につけて頂きます。
【就職先企業・職種】 製造業(化学、精密機器、電気機器、ガラス・土石製品、繊維製品、その他製品など)
研究内容
物質をナノメートルサイズまで細かくしていくと、種々の物性がサイズに依存する新奇な材料となります。このような新奇材料を一般に「ナノ材料」と呼びますが、我々はその中でも特に「ナノ粒子」に興味を持ち、ナノ粒子に関する基礎から応用に亘る研究を行っています。半導体、磁性体、金属などのナノ粒子を化学合成し、その表面をさまざまな配位子によって機能化し、さらにそれらナノ粒子の高次構造を制御することによって、バイオ・医療分野あるいは環境・エネルギー分野で新たな応用を開拓することを目指しています。
1.磁性体ナノ粒子の合成とバイオ医療分野への応用
超常磁性体のナノ粒子を独自の方法によって合成し、その表面を自在に修飾することによって、バイオ医療分野での様々な応用の道を開拓しています。具体的には、細胞やタンパクの磁気分離、MRI 造影剤、ドラッグデリバリーシステムなどのナノ磁気医療に応用するための技術開発を行っています。
2.半導体ナノ粒子の合成とエネルギー変換素子への応用
狭ギャップ化合物半導体から広ギャップ酸化物半導体のナノ粒子まで、幅広い種類の半導体ナノ粒子を化学合成し、それらを用いて低炭素社会の実現を志向したナノ構造エネルギー変換素子の創製に関する研究を行っています。特に、ナノ構造熱電素子や光機能素子などに興味を持っています。
3.金属ナノ粒子を用いたバイオセンシング技術の開発
近年、金ナノ粒子を用いた様々なバイオセンサが開発され、簡便かつ迅速に DNA 配列検出やタンパク質機能解析などが可能となってきています。我々は、ナノ粒子プローブを用いたバイオセンシング技術の更なる高度化を目指し、異種金属元素からなるヘテロ構造ナノ粒子や合金ナノ粒子のプローブの開発を進めています。
主な研究業績
- T. S. Le, M. Takahashi, N. Isozumi, A. Miyazato, Y. Hiratsuka, K. Matsumura, T. Taguchi, and S. Maenosono, “Quick and Mild Isolation of Intact Lysosomes Using Magnetic-Plasmonic Hybrid Nanoparticles”, ACS Nano 16 (2022) 885
- J. Hao, B. Liu, S. Maenosono, and J. Yang, “One-Pot Synthesis of Au-M@SiO2 (M = Rh, Pd, Ir, Pt) Core-Shell Nanoparticles as Highly Efficient Catalysts for the Reduction of 4-Nitrophenol”, Sci. Rep. 12 (2022) 7615
- T. S. Le, S. He, M. Takahashi, Y. Enomoto, Y. Matsumura, and S. Maenosono, “Enhancing the Sensitivity of Lateral Flow Immunoassay by Magnetic Enrichment Using Multifunctional Nanocomposite Probes”, Langmuir 37 (2021) 6566
使用装置
透過型電子顕微鏡 (TEM) 超伝導量子干渉磁束計 (SQUID)
過型電子顕微鏡 (STEM) 動的光散乱測定装置 (DLS)
X 線回折装置 (XRD) 共焦点レーザー顕微鏡 (CLSM)
X 線光電子分光装置 (XPS) 核磁気共鳴装置 (NMR)
研究室の指導方針
就職希望者には、基礎・専門知識はもちろん、コミュニケーション能力、英会話力、論理的思考力および柔軟な対応力を涵養し、不確実性の時代を生き抜くことができる人材となってもらうための指導を行います。企業経験を活かした実践的就職指導も行っています。
博士後期課程への進学希望者については、先端的かつ国際的な研究環境を提供することによって、将来的に大学教員や企業研究者として活躍できるグローバル研究人材を育成します。
[Website] URL:https://txj.mg-nb.com/~shinya/
ナノバイオテクノロジー


ナノバイオテクノロジー
ナノバイオ研究室 Laboratory on Nanobiotechnology
講師:高橋 麻里(TAKAHASHI Mari)
E-mail:
[研究分野]
ナノ材料科学、細胞生物学
[キーワード]
ナノ粒子、バイオ医療応用
研究を始めるのに必要な知識・能力
探求心があり、努力することを厭わず、向上心がある方ならバックグランドが違っていても研究を楽しむことができます。研究テーマに対して、自分がこの研究を進めるんだという主体的な立場にたつことが必要です。共同研究をすることが多いため、協調性やコミュニケーション能力も必要となります。
この研究で身につく能力
ナノ粒子の合成法、構造・特性評価及び解析方法に関する幅広い知識。金属・磁性・半導体材料とナノ粒子にすることで現れる特徴的な性質に関する一般的な知識。細胞生物学に関する一般的な知識。新たな課題に対して取り組むチャレンジ精神。
【就職先企業・職種】 製造業(化学、精密機器、ガラス・土石製品、繊維製品、その他製品など)
研究内容
ナノ粒子のバイオ医療応用に関する注目は年々高まっています。私達は金属・半導体・磁性体をナノサイズにすることで現れるバルクとは異なる性質を利用して、ナノ粒子のバイオ医療応用に関する研究を行っています。応用先は様々ですが、主に下記に示す3つの内容に力を入れており、それぞれの用途に合わせたナノ粒子の合成から構造解析、特性評価、応用までの一連の流れを一人の学生が担当して研究を進めます。
1. 磁性体ナノ粒子を用いた細胞内小器官の磁気分離
正常細胞と機能欠損細胞から細胞内小器官を分離し、タンパク質を解析し比較することは、疾患の分子機構の解明において重要です。超常磁性体ナノ粒子を合成し、表面を生体分子で機能化した粒子を用い、細胞内小器官を迅速かつ温和に磁気分離し、生化学的手法による解析を行います。種々の細胞内小器官の磁気分離法の構築や機能欠損細胞のタンパク質解析を通して、最終的には創薬分野への貢献を目指します。
2. 磁気粒子分光を用いたイムノアッセイ
人生100年時代と言われる現代、私達が健康に長生きするためには、疾病の早期発見のための診断技術・精度の向上がますます重要となります。磁気粒子分光(MPS)を用いたイムノアッセイ(抗原抗体反応を用いた抗原の検出)では、種々の磁性体ナノ粒子を合成しMPSで評価し、感度が高いプローブを複数選択することで同時多抗原検出を目指します。
3. アップコンバージョンナノ粒子による光遺伝学的研究
アップコンバージョンナノ粒子とは、波長が長い入射光を照射した際に波長が短い発光を示す蛍光体ナノ粒子です。光遺伝学とは光受容タンパク質を遺伝学的に細胞に発現させ、光で細胞の応答を制御する技術で、この2つを組わせることで、光による生体組織の制御を行う研究をしております。
主な研究業績
- D. Maemura, T. S. Le, M. Takahashi, K. Matsumura, and S. Maenosono: "Optogenetic Calcium Ion Influx in Myoblasts and Myotubes by Near-Infrared Light Using Upconversion Nanoparticles" ACS Appl. Mater. Interfaces 15 (2023) 42196
- T. S. Le, M. Takahashi, N. Isozumi, A. Miyazato, Y. Hiratsuka, K. Matsumura, T. Taguchi, S. Maenosono: "Quick and Mild Isolation of Intact Lysosomes Using Magnetic–Plasmonic Hybrid Nanoparticles" ACS Nano 16 (2022) 885
- T. S. Le, S. He, M. Takahashi, Y. Enomoto, Y. Matsumura, and S. Maenosono: "Enhancing the Sensitivity of Lateral Flow Immunoassay by Magnetic Enrichment Using Multifunctional Nanocomposite Probes" Langmuir 37 (2021) 6566
使用装置
透過型電子顕微鏡(TEM) 超伝導量子干渉磁束計(SQUID)
走査透過型電子顕微鏡(STEM) 動的光散乱測定装置(DLS)
X線回折装置(XRD) 共焦点レーザー顕微鏡(CLSM)
X線光電子分光装置(XPS) 核磁気共鳴装置(NMR)
研究室の指導方針
常に新しい内容の研究を行っており、研究内容に関しては教員が学生へ毎回指示を与えるのではなく、学生自身にも実験と論文調査から次の方向性を決めるといった、一緒に研究を進めていくスタンスで研究を行います。その過程で卒業後の進路(就職希望か進学希望)に合わせて必要な基礎知識と研究力が身につくように指導します。また、分野外の方でも最前線の研究が行えるように効率的な努力の仕方や学習法を身に着けられるように指導しますので、心配なことや研究に関する疑問等は積極的に相談してください。そのためにはコミュニケーション能力も重要であり、卒業後の社会人にとって必要不可欠なスキルが身につくようにサポートします。
[研究室HP] URL:https://txj.mg-nb.com/~shinya/
新しい固体触媒プロセスの構築による資源・エネルギー問題の解決に挑む!


新しい固体触媒プロセスの構築による
資源・エネルギー問題の解決に挑む!
触媒・資源変換プロセス研究室
Laboratory on Catalyst/Resource Chemical Process
准教授:西村 俊(NISHIMURA Shun)
E-mail:
[研究分野]
触媒化学、固体触媒、合金触媒、バイオマス変換
[キーワード]
資源・エネルギーの有効利用技術、金属ナノ粒子触媒、固体酸塩基触媒、新触媒の創成、触媒作用機構の解明
研究を始めるのに必要な知識・能力
基礎的な計算・データ処理能力と仲間と安全に研究を進められる方であれば、バックグラウンドを問わずに歓迎します。物理化学、有機化学、無機化学、分析化学、触媒化学などの基礎・経験があると、よりスムーズに研究を開始できます。失敗にひるまずに挑戦する「忍耐力」や「好奇心・探究心」がより自発的に研究を進める上で役に立ちます。
この研究で身につく能力
新しい固体触媒プロセスの開発は、触媒設計→触媒調製・条件の最適化→触媒活性評価・反応条件の最適化→触媒のキャラクタリゼーション→触媒作用機構の提案→検証・再考といった多くの研究段階からなっています。また、触媒作用に関連する因子は一つであるとは限りません。従って、触媒開発プロセスを経験することで、様々な分析・評価手法の技術習得、多角的に実験データを整理・解析・統合する力を身に付けることができます。また、英語の先行研究を読み自らの研究へフィードバックする力、自分の結果を他人へより分かりやすく伝えるためのプレゼンテーション力を、日常の研究室ゼミや学会発表等を通じて向上できます。
【就職先企業・職種】 化成品・ポリマー製造や自動車触媒製造を主とした化学・材料メーカーなど。
研究内容
触媒は様々な物質変換・合成プロセスに欠かすことができない材料で、身近な生活を力強く下支えしています。そのため、高機能な触媒プロセスの開発は、日常の生活様式の劇的な改善やより低環境負荷なスタイルへと大きく変えるインパクトを持っています。例えば、空気中の窒素の人工的な固定化を実現したアンモニア合成触媒の実現(1918年ノーベル化学賞)は、窒素を含む化学品合成の発展に繋がり、その後の安定的な食料生産による人口増加や火薬製造による工業の発展へと繋がりました。
当研究室では、「従来の在来型化石資源の利用技術で培われた触媒プロセス技術を生かし、より高効率な触媒を設計するための指針の提案」や、「固体触媒を用いた高効率な次世代バイオマス資源変換プロセスの構築」から、持続可能・低環境負荷な社会形成に貢献できる触媒・資源変換プロセス技術の構築を目指しています。
・金属担持触媒の高機能化に向けた触媒設計と作用機構解明
金属活性点を固体表面に固定化した金属担持触媒は、主に1. 金属活性中心の電子状態や形状、2. 金属活性点の周囲環境、3. 担体の性質によって、その触媒作用が大きく異なります。それぞれの因子を系統的に制御し、対象とする触媒反応への性能を評価することで、求める触媒作用に対して選択的に欲しい性能を付与できる触媒調製指針の策定を目指します。例えば、異種金属を合金化させた活性サイトの構築による高活性化、保護配位剤を作用させることによる活性点周囲の環境制御による高活性・高選択性の発現、特異な構造を有する担体合成による超高活性化を実現しています。
・高効率なバイオマス資源変換を実現する固体触媒プロセス開発
バイオマス資源は再生可能でカーボンニュートラルであることから、持続可能な次世代資源としての活用が期待されています。しかし、低いLCA(ライフサイクル・アセスメント)が課題です。固体触媒を用いた高効率プロセスの実現によるバイオマス資源利用の拡大を目指しています。例えば、常圧水素によるバイオ燃料製造プロセス、非可食性グルコサミン類からの高品位化成品合成プロセス、高活性な酸- 塩基反応プロセス、バイオマス由来有機酸・脂肪酸の高効率な水素化転換を実現しています。また、バイオマス資源の連続的なフロー変換プロセスの展開に必要な課題抽出とその改善にも取り組んでいます。
主な研究業績
- S. D. Le, S. Nishimura: Selective hydrogenation of succinic acid to gamma-butyrolactone with PVP-capped CuPd catalysts. Catal. Sci. Technol. 12 (2022) 1060.
- K. Anjali, S. Nishimura: Efficient Conversion of Furfural to Succinic Acid using Cobalt-Porphyrin based Catalysts and Molecular Oxygen. J. Catal. 428 (2023) 115182
- X. Li, S. Nishimura: Synthesis of 5-Hydroxymethy-2-furfurylamine via Reductive Amination of 5-Hydroxymethyl-2-furaldehyde with Supported Ni-Co Bimetallic catalysts. Catal. Lett. 154 (2024) 237.
使用装置
触媒活性評価(GC, HPLC, GC-TOFMS, FTICR-MS, 液体 NMR)
触媒構造評価(XRD, ガス吸着 / 脱着 , SEM/TEM, XPS, 固体 NMR, FT-IR, TPR/TPD, パルス分析など)
状況に応じて、外部の共同利用研究施設(KEK-PF, SPring-8, SAGA- LS など)での XAFS 測定も行います。
研究室の指導方針
当研究室では、月1~2回の研究室ゼミ(研究進捗報告・ディスカッション)を行います。コアタイムは設けませんが、社会人生活に向け て規則正しい生活リズムを作って実験・大学院生活を送ってください。本学には様々な分析機器が共通設備として整備されており、 装置によっては専門職員からのサポートも得られる充実した環境が整っています。在籍中にこのサポート・分析体制を存分に活か し、自らのスキルアップを実現してほしいと思います。在籍中に得られた成果は、国内外での学会等で対外発表を行うことを推奨 します。また、修了生1人に対して1報以上の学術論文・国際会議プロシーディングス等を公開し、各学生の成果を残せるように努めています。
[研究室HP] URL:https://txj.mg-nb.com/~s_nishim/index.html
電磁波と原子核でナノ空間を視(み)て、制御する


電磁波と原子核でナノ空間を視(み)て、制御する
固体ナノ化学研究室 Laboratory on Solid-State Nanochemistry
教授:後藤 和馬(GOTOH Kazuma)
E-mail:
[研究分野]
物理化学、無機材料化学
[キーワード]
核磁気共鳴(NMR)、炭素材料、二次電池(リチウムイオン電池、ナトリウムイオン電池、次世代電池)、その場分析
研究を始めるのに必要な知識・能力
化学の基礎知識があれば研究をすみやかに始められますが、必要なことは学ぶという意欲さえあれば知識の有無は問題ありません。研究を通して自分の成長(能力的&人間的)を望み、新しいことに取り組む意思があれば大丈夫です。
この研究で身につく能力
ものづくりに始まり、測定機器による分析、得られた実験結果・測定結果の考察までを行うので、無機材料を中心とした材料合成の実験技術、電池作製および評価の技術、NMRをはじめとする各種機器分析の技術など幅広い技術が身につきます。また、研究室でのセミナーや学会発表、海外研究グループとの国際交流を通してプレゼンテーション能力、英語力なども磨かれます。しかし一番大事なことは、得られた実験・測定結果から「物質の中で何が起きているか」を総合的にとらえ考察する能力や、課題を解決し研究をまとめるための論理的な思考力など、AIにとって代わられることのない「人間」としての考える力であり、これを特に重視しています。社会に出て長くずっと第一線で活躍できる能力を持った人になってもらいたいと考えています。
【就職先企業・職種】 化学・材料メーカー、電機・電池・自動車および関連メーカー、分析機器メーカー、公設試験研究機関、教員
研究内容
ナノサイズの空間や表面などの構造、およびミクロな環境を解明することをテーマとして、細孔物質(物質の中に多数の小さな穴=細孔をもった固体材料)の内部空間や、黒鉛などの層状化合物の層間に吸蔵された分子やイオンの状態、動的挙動、内部空間の表面状態などを、核磁気共鳴(NMR)法を中心に様々な方法で研究しています。内部空間への分子やイオンの導入(インターカレーション)は電池電極反応とも密接な関連があることから、特にリチウムイオン電池、ナトリウムイオン電池や今後実用化が期待される次世代電池など、各種二次電池の電極材料の研究を積極的に進めています。
【固体NMR開発と二次電池電極の状態分析】


電池のリアルタイムNMR解析(左上)*),金属リチウム析出イメージ(右上)2.
非晶質炭素の充電,過充電挙動モデル(下)2.
*) K.Gotoh et al., Carbon (2014).
・固体材料についてのNMRは、固体物質中の局所構造やダイナミクスの解析に極めて有効な分析手法です。特にナノ空間の構造や環境を調べる際には、吸着された物質中の原子やイオンを「プローブ(探針)」として利用し直接的に内部環境を調べることができます。よって、リチウムイオン電池やナトリウムイオン電池ではそれぞれリチウム、ナトリウムのNMR共鳴信号を解析することで、電池内部の微小な状態変化を検出できます。軽元素であるリチウムやナトリウムは電子顕微鏡やX線分光など他の分析手段では直接観測が非常に難しいため、NMRでリチウムやナトリウムなど電荷を担持する重要な核種の状態を観測することが、イオンの吸脱着メカニズム、すなわち電池の充放電メカニズムの解明に大きく役立ちます。
・最新のリチウムイオン電池や次世代電池であるナトリウムイオン電池、全固体電池などの電極内に吸蔵されたリチウム、ナトリウムの状態を解明しています。充放電により刻々と変化する内部環境をリアルタイムで観測するためには、電池の「その場観測(オペランド解析)」が必須となるため、電池観測のための高感度オペランドNMR法の開発を積極的に進めています。本手法により電池が過充電された際の金属析出メカニズムも解明できるため、安全性評価にも貢献できます。
・充放電メカニズムの解析から、新たな材料の設計指針を立て、それに基づいた負極材料の開発を行っています。炭素材料は以前から負極に用いられてきましたが、次世代電池用電極材料としても期待できることから、新たな炭素材料の開発を進めています。
主な研究業績
- Dynamic nuclear polarization -nuclear magnetic resonance for analyzing surface functional groups on carbonaceous materials. H. Ando, K. Suzuki, H. Kaji, T. Kambe, Y. Nishina, C. Nakano, K. Gotoh*, Carbon, 206, 84 (2023).
- Mechanisms for overcharging of carbon electrodes in lithium-ion/sodium-ion batteries analysed by operando solid-state NMR. K. Gotoh*, T. Yamakami, I. Nishimura, H. Kometani, H. Ando, K. Hashi, T. Shimizu and H. Ishida, J. Mater. Chem. A 8, 14472 (2020).
- Combination of solid state NMR and DFT calculation to elucidate the state of sodium in hard carbon electrodes. R. Morita, K. Gotoh*, M. Fukunishi, K. Kubota, S. Komaba, T. Yumura, N. Nishimura, K. Deguchi, S. Ohki, T. Shimizu and H. Ishida, J. Mater. Chem. A 4, 13183 (2016).
使用装置
Bruker AVANCE NEO 400MHz NMR(固体測定専用)拡散測定システム付, Bruker AVANCE Ⅲ500MHz-NMR(固体対応)オペランド測定用特殊プローブ付
X線回折,X線光電子分光(XPS),熱分析,電子顕微鏡,ガス吸脱着装置,電気化学測定装置(充放電試験装置等),電池作製設備(グローブボックス等),高温熱処理炉(2200℃)
研究室の指導方針
社会人としてどのような分野でも力を発揮できる基礎力と、専門家として活躍できる知識経験の、両方を持った人になってもらうことを目的として指導します。定期的な研究室でのセミナーや報告会がありますが、実験については装置の都合により個々のスケジュールがかなり異なってくるので、自分自身で研究計画を立案し、実行してもらうことになります。国内外の学会での発表のほか、海外研究グループや企業と進めている多彩な共同研究にも積極的に参加してもらい、国際的な幅広い視野を持てる機会を提供したいと考えています。
[研究室HP] URL:https://txj.mg-nb.com/nmcenter/labs/gotoh-www/
ナノテクノロジープラットフォーム公開講座「材料の構造解析のためのTEMの基礎と実習」参加者募集
本学ナノマテリアルテクノロジーセンター主催で「材料の構造解析のためのTEMの基礎と実習」と題して公開講座を開催いたします。
ただいま受講者を募集しております。皆様のご参加をお待ちしております。
日 時 | 令和4年3月3日(木)10:00~17:00 |
場 所 | 北陸先端科学技術大学院大学 ナノマテリアルテクノロジーセンター 2F会議室(下記フロアマップのC1-26) キャンパスマップ フロアマップ |
講 師 | 大島 義文:マテリアルサイエンス系・教授(応用物理学領域) 麻生 浩平:マテリアルサイエンス系・助教(応用物理学領域) 東嶺 孝一:ナノマテリアルテクノロジーセンター・技術専門員 |
内 容 | ナノマテリアルテクノロジーセンターが中心となってすすめている文部科学省ナノテクノロジープラットフォーム事業の企画として毎年1回公開講座を実施しています。令和3年度は透過型電子顕微鏡(TEM)をトピックスとして選び、透過型電子顕微鏡の原理、正しい観察手法や正しいデータ解析方法などをわかりやすく解説します。 |
定 員 | 5名程度(先着順) |
参加対象者 | 企業・他大学・高専等の研究者・技術者 |
受講料 | 6,200 円(税込) |
申込方法 | 受講希望の方は、 ①氏名(ふりがな) ②勤務先・職名 ③受講の目的 ④本講座に期待すること ⑤書類送付先 ⑥電話番号 ⑦メールアドレス を明記の上、E-mail (宛先 nano-net@ml.jaist.ac.jp)またはFAX(ポスター2ページ目参照)でお申し込みください。 |
申込締切 | 令和4年2月17日(木)【定員に達し次第締切】 |
問合せ・ 申込み先 |
北陸先端科学技術大学院大学 ナノマテリアルテクノロジーセンター 文部科学省ナノテクノロジープラットフォーム事務局 橋本 〒923-1292 石川県能美市旭台1-1 TEL:0761-51-1449 FAX:0761-51-1455 E-mail:nano-net@ml.jaist.ac.jp |
次世代の細胞計測技術を創り、ニューロン情報処理の秘密に迫る


次世代の細胞計測技術を創り、
ニューロン情報処理の秘密に迫る
神経情報生理学研究室
Laboratory for Neural Information Physiology
准教授:筒井 秀和(TSUTSUI Hidekazu)
E-mail:
[研究分野]
分子生物学、生理学、生物物理学、細胞計測
[キーワード]
神経細胞、分子センサー、次世代計測技術
研究を始めるのに必要な知識・能力
予備知識:分子・細胞生物学や電気回路の基礎などを理解しているとスムーズに研究を開始できますが、初学者にも丁寧に指導します。
求める人材:新しい技術を創出したい人。実験が好きで、試行錯誤や寄り道の楽しさを理解している方。
この研究で身につく能力
分子・細胞生物学、基礎生理学、生物物理学に関する基本的な研究方法や実験手技を理解し、体得します。さまざまな生命現象の仕組みや分子的基礎が詳細に解明されてきましたが、その一方で、広大な領域が未だに謎に包まれたまま残されています。本研究室では、新しい技術を創出し、今までアクセス不可能だった領域に踏み入る意義や楽しさを学びます。こうした新規技術を創り出すための創意工夫、粘り強い探求や試行錯誤を通じて身に付く能力は、学術の世界のみならず、社会や産業の発展を牽引する上で大いに役に立ちます。
【就職先企業・職種】学術、医工学・電気、情報・バイオなど
研究内容
【ニューロン回路の不思議】
柔軟さ、堅牢さ、緻密さを兼ね備えていることが細胞・組織・器官の機能の特徴の一つです。生き物の仕組みを知りたい!そんな素朴な疑問を大切に研究を行っています。具体的には、ニューロン回路における情報処理の秘密に迫るための、新しい細胞計測技術の創出に取り組んでいます。ニューロン回路は究極の生体組織です。0.1ボルト、1ミリ秒程度の電圧信号が回路網を高速に流れ、情報の表現や処理を司っています。この過程を詳細に理解することができれば、疾患の理解や新しい情報処理様式の発見のほか、想像もできない展開も期待できます。しかし、この挑戦は、数多くの障壁に阻まれています。例えば、既存の細胞計測技術では、複雑なニューロン回路の中を伝播する電気信号を十分に詳細に追跡することは困難で、実験的な立場における大きな課題の一つです。研究室では、主に二つの異なるアプローチでこの課題に取り組んでいます。
【次世代の電気生理計測法の探求】

(上)ニューロンの配線メカニズムを用いて作成した微小電極との接合構造
電気生理計測とは、金属やガラス管の微小電極を用いて、細胞の電気的現象を調べる手法の総称です。長い歴史のある計測法ですが、今日の最先端研究でも欠かすことのできない、強力な手法です。しかしながら、細胞認識能を原理的に備えていない、などの本質的な欠点が残されています。研究室では、脳内でニューロンが配線される分子メカニズムと微細加工技術を融合させることで、この課題の解決に取り組んでいます。これまでに、分子生物学的に人工設計したシナプス誘導因子を用いて、特定種のニューロンを特定の電極に接続する基本原理の実証など成功しています。ニューロン活動を読み取る次世代の電気生理技術の創出に向けて、皆さんと様々な工夫をこらし、探求をしていきます。
また、思いもよらぬ方向から、研究の突破口が開けることも多くあります。既成概念にとらわれず、不思議・楽しい!を大切にし、色々な技術や考え方を学際的に学び、日々の研究に活かしていくことを心掛けています。
【ニューロン活動を可視化する分子センサー】

(左)分子センサーの性能試験の様子
(中央)分子センサーを発現した神経細胞
(右)試作した次世代電気生理技術の原理実証用の微小電極
ある種の細胞には膜電位の変化(電圧信号)を感知するための分子が備わり、電圧信号を増幅し、細胞外環境に応じて細胞内の環境を変化させています。こうした分子を部品として使うことで、電圧信号を光の信号として可視化するセンサー分子を創ることが出来ます。研究室ではこれまでに単一細胞の単一スパイクを可視化することなどに成功してきています。皆さんといろいろなアイディアを持ち寄り、センサーのさらなる高速・高感度化を目指したいと考えています。また、細胞に備わるそうした分子が、そもそもどのような仕組みで電圧信号を感知しているのか?といった基礎的な問題にも興味を持って研究を進めています。
主な研究業績
- K. Sekine, et al., Neuron-microelectrode junction induced by an engineered synapse organizer, Biochem. Biophys. Res. Commun. p149935, 2024.
- W. Haga, et al., Development of artificial synapse organizers liganded with a peptide tag for molecularly inducible neuron-microelectrode interface, Biochem. Biophys. Res. Commun., vol. 699, 2024.
- S. Kim, et al., Formation of neuron-microelectrode junction mediated by a synapse organizer, Appl. Phys. Express, vol. 16, 2023.
使用装置
各種光学顕微鏡・走査型電子顕微鏡
電気生理・電気化学計測関連機器
薄膜作成・微細加工装置
細胞・組織培養関連機器
分子生物学関連機器
研究室の指導方針
研究は自由で楽しいものであるべきと考えますが、それもバックグラウンドの正しい理解や確かな実験技術に基づくはずです。まずは正確な実験や観察が行えるようになる事に努めます。研究結果の定期的な発表(プログレスレポート)および論文紹介(ジャーナルクラブ)を通じてプレゼンテーション力を身につけます。英語専門書を一つ選定して、輪読を行い、研究の背後にある概念や文化を理解する事にも重点を置きます。
[研究室HP] URL:https://txj.mg-nb.com/ms/labs/tsutsui/wordpress/
人体に学び、自然を理解し、ナノ戦略で難治性疾患や老化に挑む

人体に学び、自然を理解し、ナノ戦略で難治性疾患や老化に挑む
抗疾患ナノファイター研究室 Laboratory on Anti-Disease Nano-Fighter
教授:鄭 主恩(CHUNG, Joo Eun)
E-mail:
[研究分野]
バイオマテリアル、ドラッグデリバリーシステム(DDS)、ナノメディシン、抗がん治療、アンチエイジング
[キーワード]
生体適合性ポリマー、ナノ粒子、非侵襲的薬物送達、ターゲティング、薬効増幅、緑茶カテキン、メラトニン
研究を始めるのに必要な知識・能力
特別な専門知識や技術は必要ありません。科学への探究心があり、向上心、自他への責任感、本気で世界トップレベルの研究に取り組む意欲と覚悟が大事です。
この研究で身につく能力
バイオマテリアルの合成やナノ粒子の調製から化学物質・細胞・動物を用いた様々な手法の評価まで、学際的な知識や分析技術を経験し習得することができます。社会実装価値の高い医療技術創出を目指し世界最先端技術と競う研究を行う中、実験・ディスカッション・プレゼンテーション・論文執筆を通して、論理的思考、慎重さ、忍耐強さ、トラブルシューティング能力、洞察力、コミュニケーション能力を鍛えられるよう指導します。
【就職先企業・職種】 大学教員、博士研究員、特許審査官、化学企業、製薬企業
研究内容

図1 自然由来のナノファイターによる難治性疾患治療および健康寿命の伸長
当研究室はバイオマテリアルを用いたナノシステムを開発し、現治療法の限界を克服することを目指しています。
昨今、医療技術の発展に伴い世界中の人々の寿命が長くなっていますが、健康寿命の伸長は平均寿命より遅く、そのギャップは老化に伴う様々な疾患による生活質(QOL)の低下や個人と社会への大きな負担をもたらしています。当研究室では自然や人体由来の物質からなる新規な生体分解性バイオマテリアルを合成し、様々な難治性疾患の治療や抗老化作用を発揮するナノ粒子を開発しています。例えば、緑茶カテキンまたは脳内睡眠ホルモンであるメラトニンの誘導体を薬物キャリアとしたナノ粒子の開発により、今まで薬物送達が困難とされている疾患部位(がん・脳・後眼部など)へタンパク質・抗体・低分子・核酸などの性質の異なる様々な薬物を高濃度で疾患部位へ特異的に送達し、従来の薬物治療の大きい問題となっている正常部位への副作用を低減すると共に、緑茶カテキンやメラトニンから由来するキャリア本来の治療効能とのシナジー効果により、著しく薬効を増幅することが可能であります(図1)。このナノ粒子は薬物送達の妨げになっている様々な生体バリアを効率よく克服する高い薬物送達能力と、副作用のない低濃度の薬物を用いても高い薬効を達成する薬効増幅能力を兼ね備えた革新的なテクノロジーであり、トップジャーナルに掲載され高い国際評価を受けています。さらに国際特許(90報以上)の出願・登録および大学や企業との共同研究など臨床応用及び産業化を目指した研究開発を推進します。
従来のDDS製剤とは異なる設計指針によって開発されている当研究室のナノメディシンにより、今まで治療困難であった難治性疾患の治療や老化により蓄積する生体へのダメージの修復を可能とし、健康な生活・社会の実現や産業の活性化を目指しています。
主な研究業績
- N. Yongvongsoontorn, J. E. Chung, S. J. Gao, K. H. Bae, M. H. Tan, J. Y. Ying, M. Kurisawa, Carrier-enhanced anticancer efficacy of sunitinib-loaded green tea-based micellar nanocomplex beyond tumor-targeted delivery, ACS Nano 13, 7591-7602 (2019).
- K. Liang, J. E. Chung, S. J. Gao, N. Yongvongsoontorn, M. Kurisawa, Highly augmented drug loading and stability of micellar nanocomplexes comprised of doxorubicin and poly(ethylene glycol)-green tea catechin conjugate for cancer therapy, Advanced Materials 30, 1706963 (2018).
- J. E. Chung et al. Self-assembled nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy, Nature Nanotechnology. 9, 907-912 (2014).
使用装置
動的光散乱測定装置、紫外可視分光光度計、HPLC、NMR、電子顕微鏡、細胞培養装置、動物実験関連機器、IVIS動物イメージングシステム
研究室の指導方針
自分が行っている研究の科学的・社会的意義やインパクト、そして最先端技術と競うレベルの新規性をしっかり理解することで、熱意と意欲を持って研究を進めるよう鼓舞します。研究の進捗状況に関する十分なディスカッションを行い、総合・分析・判断力や問題解決能力を身につけるよう指導します。研究課題を含め学生の個性と適性に合った方法で段階的なマルチプルマイルストーンを設定し、着実に自信をつけながら成長するよう努めます。迅速な意見交換やチームワークは研究遂行において重要であるため、コアタイム(10-17時)を設けます。雑誌会、研究発表、論文執筆を通して、実力・倫理観・リーダーシップを兼ね備えた科学者として活躍できるよう育成します。
[研究室HP] 作成中
機能性バイオマテリアルで難治性疾患を治療する


機能性バイオマテリアルで難治性疾患を治療する
先端ナノ医療・長寿創生研究室
Laboratory on Advanced Nanomedicine and Longevity Creation
教授:栗澤 元一(KURISAWA Motoichi)
E-mail:
[研究分野]
バイオマテリアル、ドラッグデリバリーシステム(DDS)、ナノメディシン、再生医療
[キーワード]
生体内分解性高分子、ナノ粒子、緑茶カテキン、インジェクタブルゲル、薬物徐放・ターゲッテイング、細胞治療
研究を始めるのに必要な知識・能力
高分子化学の基礎知識があれば、問題なく研究を始めることができますが、入学前に特別な知識・能力がなくても大学や企業で活躍出来るように本気で指導します。要は日々の研究活動に対する心構え次第で、いくらでも成長できます。そのためには自他共栄の精神を研究スタッフ・学生と共有できる研究室づくりが大切だと考えています。
この研究で身につく能力
栗澤研究室では、ナノ粒子やゲルの設計・合成、キャラクタリゼーションを行い、細胞実験や動物実験によって、目的とする機能が十分であるのか否かを評価します。幅広い領域を学ぶので、種々の測定装置や実験手法の基礎を身につけることができます。動物実験を完了するころには、緻密な実験計画を立てる能力、討論・プレゼンテーション能力を習得することができます。研究目的を達成することに邁進することは大事なのですが、フェアに実験結果を評価できる能力を習得できるように指導します。
【就職先企業・職種】 大学教員、博士研究員、特許審査官、化学企業、製薬企業
研究内容

図1.緑茶カテキン・ナノ粒子による疾患治療
当研究室では、高分子科学、生体材料、ドラッグデリバリーシステム(DDS)、再生医療などの学問領域を基盤とし、難治性疾患を治療可能とする機能性生体材料を開発します。昨今、遺伝子治療や再生医療などを含む先端医療が実施され、これまでに治療不可能とされてきた疾患に新しい治療法が切り拓かれてきています。このような先端医療を支える生体材料に関する研究は、難治性疾患を将来的に治療可能とする医療技術開発において益々重要な役割を果たすものと考えられます。シンガポール、韓国、米国をはじめとする海外研究機関との共同研究を展開しており、臨床応用及び産業化を目指した研究開発を推進します。
[緑茶カテキン・ナノ粒子を用いたドラックデリバリーシステム]
栗澤研究室では、タンパク質・抗体・低分子・核酸などの性質の異なる医薬品の内包を可能とする緑茶カテキン誘導体を薬物キャリアとしたナノ粒子の開発によって、癌をはじめとする難治性疾患の治療を目指したドラッグデリバリーシステム(DDS)の研究を展開します(図1)。 緑茶カテキン・ナノ粒子は、薬物を疾患部に送達することを主な目的とした従来のDDS製剤とは異なる設計指針によって開発されています。疾患部への送達に加えて、薬物キャリアの主成分である緑茶カテキンが抗癌活性を有するために、薬物と緑茶カテキンのそれぞれの抗癌活性に基づくシナジー効果によって、抗腫瘍効果を増幅することを特徴としています。

図2.インジェクタブルゲル・システムによる医療応用
[インジェクタブルゲルによるヘルスケアへの貢献]
生体内での安全なハイドロゲル形成を可能とするインジェクタブルゲルシステムの開発及びその生体機能性材料としての応用研究を展開します。従来、注射によって生体内で安全に化学架橋を誘導する事は困難でありましたが、高分子—フェノールコンジュゲートと酵素溶液の同時注入により、コンジュゲート中のフェノールの酸化カップリングを誘導し、生体内で安全にゲル化させるプラットホームテクノロジーを開発しています(図2)。この手法によって、生体内で薬物及び細胞をゲル内に固定し、長期間に及ぶ薬物徐放及び細胞増殖・分化の制御が可能となることから、様々な疾患に対して新たな治療法をDDS及び再生医療分野において確立されることが期待されます。
主な研究業績
- N. Yongvongsoontorn, J. E. Chung, S. J. Gao, K. H. Bae, M. H. Tan, J. Y. Ying, M. Kurisawa, Carrier-enhanced anticancer efficacy of sunitinib-loaded green tea-based micellar nanocomplex beyond tumor-targeted delivery, ACS Nano 13, 7591-7602 (2019).
- K. Liang, J. E. Chung, S. J. Gao, N. Yongvongsoontorn, M. Kurisawa, Highly augmented drug loading and stability of micellar nanocomplexes comprised of doxorubicin and poly(ethylene glycol)-green tea catechin conjugate for cancer therapy, Adv. Mater. 30, 1706963 (2018).
- J. E. Chung et al. Self-assembled nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy, Nature Nanotechnol. 9, 907-912 (2014).
使用装置
紫外可視分光光度計、NMR、動的光散乱測定装置、HPLC、レオメーター、電子顕微鏡、細胞培養装置、動物実験関連機器
研究室の指導方針
学生に寄り添うスタイルで研究室を運営することをモットーとします。研究のディスカッションや勉強会・雑誌会はできる限り、 頻繁に行い、学生の研究能力の向上に努めます。当然ながら、レベルの高い研究成果を多く創出することは重要ではありますが、学生には先ず、自身が携わっている学問や研究が開拓しうる将来の社会を楽しく想像しながら研究することを提案します。応用研究を遂行する際には、社会貢献の可能性について、学生と十分に議論し、将来に学生が社会でリーダとして活躍するべく力を養う機会にします。また、学生であっても情報受信だけではなく、情報発信ができるよう指導いたします。学生の興味や個性をよく把握し、学生の能力を伸ばします。研究室内では常に世界の最先端の研究を意識しつつ、研究室もその舞台の中であり、世界に向けて発信したいと強く学生が意識する雰囲気を創ります。
[研究室HP] URL:https://kurisawa-lab.labby.jp/
自然環境と生体物質の歴史に学ぶー高分子の世界に挑戦!ー


自然環境と生体物質の歴史に学ぶ
ー高分子の世界に挑戦!ー
DRY & WET ソフトマテリアル研究室
Laboratory on DRY & WET Soft Materials
准教授:桶葭 興資(OKEYOSHI Kosuke)
E-mail:
[研究分野]
高分子科学、光化学、ソフトマター
[キーワード]
ゲル、水、ソフトマテリアルの幾何学、光機能材料、エネルギー変換材料、バイオミメティクス
研究を始めるのに必要な知識・能力
高分子科学、物理化学、材料科学、光化学、ソフトマターの基礎知識や経験を持っていると望ましいでしょう。そして何より、チャレンジングスピリットを強く持っている人、好奇心の強い人、思考の持久力を高めたい人と研究を始めたいと考えています。
この研究で身につく能力
論理説明能力・解釈能力、科学的な仮説検証・立案力、高精度なディスカッション能力、発表能力、英語コミュニケーション力
学問分野:高分子科学、光化学、コロイド科学、界面化学、幾何学、非線形科学など
【就職先企業・職種】 化学メーカー、医療機器メーカー、自動車関連、材料全般、食品関連、化粧品関連など
研究内容
自然界を見渡すと、目に見えるレベルで綺麗なパターンがたくさんあります。たとえば生体組織は小さな分子から「自己組織化」 によって創り上げられています。これは、物質そのものにだけ由来している訳ではなく、外的な環境が強く作用した結果です。変化する環境に適応できるように生命が進化した結果、多様な空間 パターンやリズムが生まれています。
一方、人工的に合成された分子から物理環境を制御してパターンを創り出す研究は歴史的に長くなされています。しかし、合成分子のままでは医療や工業的に材料化する上で困難を極め、生体組織との調和や自然との共生には幾つものハードルがあります。これに対して我々は直近の研究で、天然分子の多糖が自らパターンを再構築する現象を発見しました。ここで、「なぜ」「どのように」パターンをつくるのかを解明できれば、生体適合性と環境適応性を合わせ持つマテリアルを手に入れることができます。
1.DRY でWET な天然多糖の自己組織化
天然から抽出された多糖は、どのようにcmスケールの幾何学パターンを生み出すのか、特に、乾燥環境下で多糖が見せる「空間認識」の法則性を検証しています。DRY でWET な非平衡環境下、ミクロにもマクロにも高分子が組織化して析出してきます。実際の生体組織が常に乾燥環境におかれながらもWETなからだを維持していることを振り返ってみれば、水中から陸上進出した生体高分子の進化を紐解く鍵があるはずです。
2.ソフトマテリアルのパターン制御
生体高分子、合成高分子に関わらず多くのソフトマテリアルは、界面の応力制御によって形態の制御が可能です。ほんの小さな環境の違いや僅かな力学的エネルギー負荷によって、多様な構造や形態を見せます(自己集積、自己相似、フラクタルなど:図参照)。これを利用してDRY でWET な環境に適応した医療用材料の設計法を見出したいと考えています。
これら「自然美の追求」を基に現象の法則性を導くことが究極目標です。そして、生物がなぜパターンを創るようになったのか?自然科学の大命題に挑戦しています。
主な研究業績
- Bioinspired gels: polymeric designs towards artificial photosynthesis. Hagiwara R, Yoshida R, Okeyoshi K, Chemical Communications 60, 13314-13324 (2024).
- Recognition of spatial finiteness in meniscus splitting through evaporative interface fluctuations. Wu L, Saito I, Hongo K, Okeyoshi K, Advanced Materials Interfaces 10, 2300510 (2023).
- DRY & WET: meniscus splitting from a mixture of polysaccharides and water. Okeyoshi K, Polymer Journal 52, 1185 (2020).
使用装置
各種光学顕微鏡、各種光学装置(偏光、蛍光など)、画像解析装置、粘度計、密度計、動的光散乱、電子顕微鏡
研究室の指導方針
社会で働くトレーニング期間として、個人個人の能力を最大限に発揮できるようにサポートします。我々のグループは研究・文化の両面で多様な環境に在り、多角的な視野を構築する上で日本でも稀に見る貴重なチャンスです。突出した先端研究をみなさんと進めたいと考えています。そのためにも以下1−3の基礎を実践していきます。
1. 実験とディスカッションを通して論理的思考力と先見性の能力を養う。
2. 仮説と検証を繰り返し大目標にアプローチする。
3. 学会発表、学術論文発表を念頭に科学的言語を使う。
これらの積み重ねを自信にして創造力を高めていきたいと考えています。熱いハートのみなさん、ぜひ21世紀のパイオニアを目指して一緒にチャレンジしましょう!
[研究室HP] URL:https://sites.google.com/oke-acgroup.com/web/home-j